
Securing Cloud Data under Key Exposure              
Using OTP  

                    K.Gobinathan1, S.Kiran Kumar2 ,A.Mohammed Yaseen3, M.Abuthathir4  

1.Assistant Professor,Dept Of CSE,Gnanamani college of Technology,Namakkal-637018. 

2.Final Year UG Student, ,Dept Of CSE,Gnanamani college of Technology,Namakkal-637018. 

3.Final Year UG Student, ,Dept Of CSE,Gnanamani college of Technology,Namakkal-637018. 

4.Final Year UG Student, ,Dept Of CSE,Gnanamani college of Technology,Namakkal-637018.  
 

 

Abstract—Recent news reveal a powerful attacker which breaks data confidentiality by acquiring cryptographic 

keys, by means of coercion or backdoors in   cryptographic software.  Once the  encryption  key is exposed, the 

only viable measure to preserve data confidentiality is to limit the attacker’s access to the ciphertext. This may be 

achieved, for example, by spreading ciphertext blocks across servers in multiple administrative domains—thus 

assuming that the  adversary  cannot    compromise all  of them. Nevertheless, if data is encrypted with existing 

schemes, an adversary equipped with the encryption key, can still compromise a single server and decrypt the  

ciphertext blocks stored there in.In this paper,  we study data confidentiality against an adversary which knows 

the   encryption key and has access to a large fraction of the ciphertext blocks. To this end, we propose Bastion, a 

novel and efficient scheme that  guarantees data  confidentiality   even if the  encryption  key  is  leaked  and  the 

adversary has access to almost all ciphertext blocks.We analyze the security of Bastion, and we evaluate its 

performance by means of a prototype implementation. We also discuss practical insights with respect to the 

integration of Bastion  

in commercial dispersed storage systems.  

1. INTRODUCTION  
HE world recently witnessed a massive  

T surveillance program aimed at breaking users’ privacy. 

Perpetrators were not hindered by the various security 

measures deployed within the targeted services [31]. For 

instance, although these services relied on encryption 

mechanisms to guarantee data confidentiality, the necessary 

keying material was acquired by means of backdoors, bribe, 

or coercion.If the encryption key is exposed, the only viable 

means to guarantee confidentiality is to limit the 

adversary’s access to the ciphertext, e.g., by spreading it 

across multiple administrative domains, in the hope that the 

adversary cannot compromise all of them. However, even if 

the data is encrypted and dispersed across different 

administrative domains, an adversary equipped with the 

appropriate keying material can compromise a server in one 

domain and decrypt ciphertext blocks stored therein. In this 

paper, we study data confidentiality against an adversary 

which knows the encryption key and has access to a large 

fraction of the ciphertext blocks. To this end, we propose 

Bastion, a novel and efficient scheme that guarantees data 

confidentiality even if the encryption key is leaked and the 

adversary has access to almost all ciphertext blocks.We 

analyze the security of Bastion, and we evaluate its 

performance by means of a prototype implementation. We 

also discuss practical insights with respect to the integration 

of Bastion in commercial dispersed storage systems.  

cryptographic solutions, including those that protect 

encryption keys by means of secretsharing (since these 

keys can be leaked as soon as they are generated).  

To this end, we propose Bastion, a novel and efficient 

scheme that guarantees data confidentiality even if the 

encryption key is leaked and the adversary has access to 

almost all ciphertext blocks.  

 We analyze the security of Bastion, and we evaluate 

its performance by means of a prototype implementation. 

We also discuss practical insights with respect to the 

integration of Bastion in commercial dispersed storage 

systems. Existing AON encryption schemes, however, 

require at least two rounds of block cipher encryptions on 

the data: one preprocessing round to create the AONT, 

followed by another round for the actual encryption. 

Notice that these rounds are sequential, and cannot be 

parallelized. This results in considerable—often 

unacceptable— overhead to encrypt and decrypt large 

files. On the other hand, Bastion requires only one round 

of encryption—which makes it well-suited to be 

integrated in existing dispersed storage systems.  

  



We evaluate the performance of Bastion in comparison 

with a number of existing encryption schemes. Our results 

show that   Bastion only incurs a negligible performance 

deterioration (less than 5%) when compared to symmetric 

encryption schemes, and considerably improves the 

performance of existing AON encryption schemes [12], 

[26]. We also discuss practical insights with respect to the 

possible integration of Bastion in commercial dispersed 

storage systems. Our contributions in this paper can be 

summarized as follows:  

  

2. Encryption and decryption modes  
An encryption mode based on a block] is the conversion of 

data into a form, called a ciphertext, that cannot be easily 

understood by unauthorized people. Decryption is the 

process of converting encrypted data back into its original 

form, so it is easily understood. Encryption is a mechanism 

for hiding information by turning readable text into a 

stream of gibberish in such a way that someone with the 

proper key can make it readable again.  

 Encryption helps to you protect the privacy of your 

messages, documents and sensitive files.In its earliest form, 

people have been attempting to conceal certain information 

that they wanted to keep to their own possession by 

substituting parts of the information with symbols, numbers 

and pictures, this paper highlights in chronology the history 

of Cryptography throughout centuries. For different reason 

humans have been interested in protecting their messages.  

Symmetric key encryption algorithms  use a single secret 

key to encrypt    and decrypt data. You must securet he key 

from access by unauthorized agents because any party that 

has the key can use it to decrypt data. Secret-key encryption 

is also referred  to as symmetric encryption because the 

same key is used for encryption and decryption. Secret-key 

encryption algorithms are extremely fast (compared to 

public-key algorithms)  and   are well suited for   

performing cryptographic transformations on large streams 

of data.  The diagram for Secret Key Algorithms below 

illustrates the mechanism in a well defined way.  The  

illustrates   the secret key algorithm. This algorithm uses 

the same secret key at both sides i.e sender and receiver 

side. Both the parties required the same shared secret key. 

There are various symmetric  key algorithms that are used 

now a day.  

 Brief definitions of the most common encryption 

techniques are given as follows:  

DES (Data Encryption Standard), was the first encryption 

standard to be recommended by NIST (National Institute of 

Standards and Technology) DES is . DES also uses a key to 

customize the transformation, so that decryption can 

supposedly only be performed by those who know the 

particular key used to encrypt. The key ostensibly consists 

of 64 bits; however, only 56 of these are actually used by 

the algorithm.   

  

3. SYSTEM AND SECURITY 

MODEL  
In this section, we start by detailing the system and 

security models that we consider in the paper. We then 

argue that existing security definitions do not capture well 

the assumption of key exposure, and propose a new 

security definition that captures this notion.  

3.1  System Model  
We consider a multi-cloud storage system which can 

leverage a number of commodity cloud providers ( e.g., 

Amazon, Google) with the goal of distributing trust across 

different administrative domains. This “cloud of clouds” 

model is receiving increasing attention nowadays [4], [6], 

[32] with cloud storage providers such as EMC, IBM, and 

Microsoft, offering products for multicloud systems [15], 

[16], [29].  

In particular, we consider a system of s storage 

servers S1,...,Ss, and a collection of users. We assume that 

each server appropriately authenticates users. For 

simplicity and without loss of generality, we focus on the 

read/write storage abstraction of [21] which exports two 

operations:  

write(v)This  routine splits v  into  s  
 pieces  

{v1,...,vs} and sends hvji to server Sj, for j  

[1...s].  

read(·) The read routine fetches the stored value v 

from the servers. For each j  [1...s], piece vj 

is downloaded from server Sj and all  

  



Fig. 1. Our attacker model. We assume an adversary which 

can acquire all the cryptographic secret material, and can 

compromise a large fraction (up to all but one) of the 

storage servers.  

pieces are combined into v. We assume that the 

initial value of the storage is a special value , 

which is not a valid input value for a write 

operation.  

3.2  Adversarial Model  
We assume a computationally-bounded adversary A which 

can acquire the long-term cryptographic keys used to 

encrypt the data. The adversary may do so either (i) by 

leveraging flaws or backdoors in the key-generation 

software [31], or (ii) by compromising the device that stores 

the keys (in the cloud or at the user). Since ciphertext 

blocks are distributed across servers hosted within different 

domains, we assume that the adversary cannot compromise 

all storage servers (cf. Figure 1). In particular, we assume 

that the adversary can compromise all but one of the servers 

and we model this adversary by giving it access to all but λ 

ciphertext blocks.  

Note that if the adversary also learns the user’s 

credentials to log into the storage servers and downloads all 

the ciphertext blocks, then no cryptographic mechanism can 

preserve data confidentiality. We stress that compromising 

the encryption key does not necessarily imply the 

compromise of the user’s credentials. For example, 

encryption can occur on a specificpurpose device [10], and 

the key can be leaked, e.g., by the manufacturer; in this 

scenario, the user’s credentials to access the cloud servers 

are clearly not compromised.  

3.3  (n − λ)-CAKE Security  
Existing security notions for encryption modes capture data 

confidentiality against an adversary which does not have 

the encryption key. That is, if the key is leaked, the 

confidentiality of data is broken.  

In this paper we study an adversary that has access to 

the encryption key but does not have the entire ciphertext. 

We therefore propose a new security definition that models 

our scenario.  

As introduced above, we allow the adversary to access 

an encryption/decryption oracle and to “see” all but λ 

ciphertext blocks. Since confidentiality with λ = 0 is clearly 

not achievable1, we instead seek an encryption mode where 

λ = 1. However, having the flexibility of setting λ ≥ 1 

allows the design of more efficient schemes while keeping 

a high degree of security in practical deployments. (See 

Remark 7.)  

We call our security notion (n−λ) Ciphertext Access 

under Key Exposure, or (n − λ)CAKE. Similar to [12] , (n 

− λ)CAKE specifies a block length l such that a ciphertext 

y can be written as y = y[1]...y[n] where |y[i]| = l and n > 

1.  

(n−λ) CAKE  

ExpQ (A,b) a ← K(1k)  

1  x0,x1,state  ←  

AEFa,Fa−   (find) yb ← EFa,Fa−1(xb)  

1 b′ ← AYb,EFa,Fa−   (guess,state)  

The adversary has unrestricted access to EFa,Fa−1 in 

both the “find” and “guess” stages. On input j, the oracle   

Yb returns yb[j] and accepts up to n − λ queries. On the one 

hand, unrestricted oracle access to captures the 

adversary’s knowledge of the secret key. On the other 

hand, the oracle Yb models the fact that the adversary has 

access to all but λ ciphertext blocks. This is the case 

when, for example, each server stores λ ciphertext blocks 

and the adversary cannot compromise all servers. The 

advantage of the adversary is defined as:  

CAKE  (n−λ)CAKE  

(A) = Pr[ExpQ  (A,1) = 1]−  

Pr[Exp(Q n−λ)CAKE (A,0) =  

1]  

Definition 3. An encryption mode = (K,E,D) is  

(n−λ)CAKE secure if for any p.p.t. Q adversary A, we  

have   Adv(
Q

n−λ)CAKE(A) ≤ ǫ, where ǫ is a negligible 

function in the security parameter.  

Definition 3 resembles Definition 2 but has two 

fundamental differences. First, (n − λ)CAKE refers to a 

keyed scheme and gives the adversary unrestricted access 

to the encryption/decryption oracles. Second, (n − 

λ)CAKE relaxes the notion of all-or-nothing and 

parameterizes the number of ciphertext blocks that are not 

given to the adversary. As we will show in Section 4.2, 

this relaxation allows us to design encryption modes that 

are considerably more efficient than existing modes 

which offer a comparable level of security.  

We stress that (n−λ)CAKE does not consider 

confidentiality against “traditional” adversaries (i.e., 

adversaries which do not know the encryption key). 

Indeed, an ind-adversary is not given the encryption key 



but has access to all ciphertext blocks. That is, the 

indadversary can compromise all the s storage servers. 

An (n − λ)CAKE-adversary is given the encryption key 

but can access all but λ ciphertext blocks. In practice,  

1. Any party with access to all the ciphertext blocks and 

the encryption key can recover the plaintext.  

the (n − λ)CAKE-adversary has the encryption key but can 

compromise up to s − 1 storage servers. Therefore, 

properties: Q we seek an encryption mode with the 

following  

1) must be ind secure against an adversary which 

doesQ not know the encryption key but has access 

to  

all ciphertext blocks (cf. Definition 1), by 

compromising all storage servers.  

2) must be (n − λ)CAKE secure against an ad-  

Qversary which knows the encryption key but has  

access to n − λ ciphertext blocks (cf. Definition 3), 

since it cannot compromise all storage servers.  

Remark 4. Property 2 ensures data confidentiality against 

the attacker model outlined in Section 3.2. Nevertheless, 

we must also account for weaker adversaries (i.e., 

traditional adversaries) that do not know the encryption 

key but can access the entire ciphertext — hence, ind 

security. Note that if the adversary which has access to 

the encryption key, can also access all the ciphertext 

blocks, then no cryptographic mechanism can preserve 

data confidentiality.  

4. IMPLEMENTATION AND 

EVALUATION  
In this section, we describe and evaluate a prototype 

implementation modeling a read-write storage system based 

on Bastion. We also discuss insights with respect to the 

integration of Bastion within existing dispersed storage 

systems.  

4.1  Implementation Setup  
Our prototype, implemented in C++, emulates the read-

write storage model of Section 3.1. We instantiate Bastion 

with the CTR encryption mode (cf. Figure 1) using both 

AES128 and  

Rijndael256, implemented using the libmcrypt.so. 4.4.7 

library. Since this library does not natively support the CTR 

encryption mode, we use it for the generation of the CTR 

keystream, which is later XORed with the plaintext.  

We compare Bastion with the AON encryption schemes 

of Rivest [26] and Desai [12]. For baseline comparison, we 

include in our evaluation the CTR encryption mode and the 

AONTs due to Rivest [26] and  

7. Security according to Definition 1 is achieved 

because the key used to create the AONT is always random, 

even if the key used to add the outer layer of encryption is 

fixed.  

8. Bastion requires (n−1) XOR operations for the 

CTR encryption and 2n XOR operations for the linear 

transform.  

Desai [12], which are used in existing dispersed storage 

systems, e.g., Cleversafe [25]. We do not evaluate the 

performance of secret-sharing the data because of its 

prohibitively large storage overhead (squared in the 

number of input blocks). We evaluate our 

implementations on an Intel(R) Xeon(R) CPU E5-2470 

running at 2.30GHz. Note that the processor clock 

frequency might have been higher during the evaluation 

due to the TurboBoost technology of the CPU. In our 

evaluation, we abstract away the effects of network 

delays and congestion, and we only assess the processing 

performance of the encryption for the considered 

schemes. This is a reasonable assumption since all 

schemes are length-preserving (plus an additional block 

of l bits), and are therefore likely to exhibit the same 

network performance. Moreover, we only measure the 

performance incurred during encryption/encoding, since 

all schemes are symmetric, and therefore the 

decryption/decoding performance is comparable to that of 

the encryption/encoding process.  

We measure the peak throughput and the latency 

exhibited by our implementations w.r.t. various file/block 

sizes. For each data point, we report the average of 30 runs. 

Due to their small widths, we do not show the 

corresponding 95% confidence intervals.  

4.2  Evaluation Results  
Our evaluation results are reported in Figure 3 and Figure 

4. Both figures show that Bastion considerably improves 

(by more than 50%) the performance of existing (n − 

1)CAKE encryption schemes and only incurs a negligible 

overhead when compared to existing semantically secure 

encryption modes (e.g., the CTR encryption mode) that 

are only 1CAKE secure.  

In Figure 3, we show the peak throughput achieved by 

the CTR encryption mode, Bastion, Desai AONT/AON, 



and Rivest AONT/AON schemes. The peak throughput 

achieved by Bastion reaches almost 72 MB/s and is only 

1% lower than the one exhibited by the CTR encryption 

mode. When compared with existing (n−1)CAKE secure 

schemes, such as Desai AON encryption and Rivest AON 

encryption, our results show that the peak throughput of 

Bastion is almost twice as large as that of Desai AON 

encryption, and more than three times larger than the peak 

throughput of Rivest AON encryption.  

We also evaluate the performance of Bastion, with respect 

to different block sizes of the underlying block cipher. Our 

results show that— irrespective of the block size—Bastion 

only incurs a negligible performance deterioration in peak 

throughput when compared to the CTR encryption mode. 

Figures 4(a) and 4(b) show the latency (in ms) incurred by 

the encryption/encoding routines for different file sizes. 

The latency of Bastion is comparable to that of the CTR 

encryption mode—for both AES128 and Rijandael256—

and results in a considerable improvement over existing 

AON encryption schemes (more than 50% gain in 

latency).  

 
encryption/encoding for different  

 
encryption/encoding for different block 

sizes of the underlying block cipher.  

Fig. 4. Performance evaluation of Bastion. Each data point 

in is averaged over 30 runs. Unless otherwise specified, the 

underlying block cipher is AES-128. CTR(256) and 

Bastion(256) denote the CTR encryption mode and Bastion 

encryption routine, respectively, instantiated with 

Rijandael256.  

4.3  Deployment within HYDRAstor  

Recall that Bastion preserves data confidentiality against an 

adversary that has the encryption key as long as the 

adversary does not have access to two ciphertext blocks. In 

a multi-cloud storage system, if each server stores at least 

two ciphertext blocks, then Bastion clearly preserves data 

confidentiality unless all servers are compromised.  

  

  

  

Fig. 3. Peak throughput comparison. Unless otherwise specified, the underlying block cipher is AES128. Each data point is 

averaged over 30 runs. Histograms in dark blue depict encryption modes which offer comparable security to Bastion. 

Light blue histograms refer to encryption/encoding modes where individual ciphertext blocks can be inverted when the 

key is exposed.  



In scenarios where servers can be faulty, Bastion can 

be combined with information dispersal algorithms (e.g., 

[24]) to provide data confidentiality and fault tolerance. 

Recall that information dispersal algorithms (IDA), 

parameterized with t1,t2 (where t1 ≤ t2), encode data into t2 

symbols such that the original data can be recovered from 

any t1 encoded symbols. In our multicloud storage system 

(cf. Section 3.1), the ciphertext output by Bastion is then 

fed to the IDA encoding routine, with symbols of size l 

bits, and with parameters t2 ≥ 2s, t1 < t2, where s is the 

number of available servers. Since the output of the IDA 

is equally spread across the s servers, by setting t2 ≥ 2s, we 

ensure that each server stores at least two ciphertext 

blocks worth of data. Finally, the encoded symbols are 

input to the write() routine that distributes symbols evenly 

to each of the storage servers. Recovering f via the read() 

routine entails fetching t1 encoded symbols from the 

servers and decoding them via the IDA decoding routine. 

The resulting ciphertext can be decrypted using Bastion to 

recover file f. By doing so, data confidentiality is 

preserved even if the key is exposed unless  

servers are compromised. Furthermore, data availability is 

guaranteed in spite of (s − t) server failures.  

HYDRAstor  

We now discuss the integration of a prototype 

implementation of Bastion within the HYDRAstor grid 

storage system [13], [23]. HYDRAstor is a commercial 

secondary storage solution for enterprises, which consists 

of a back-end architectured as a grid of storage nodes built 

around a distributed hash table.   

To better assess the performance impact of Bastion in 

HYDRAstor, we evaluated the performance of Bastion in 

the newest generation HYDRAstor HS8-4000 series 

system, which uses CPUs with accelerated AES encryption 

(i.e., the AESNI instruction set). In our experiments, all 

written data was unique to remove the effect of data 

deduplication. Results show that the write bandwidth was 

not affected by the integration of Bastion. The read 

bandwidth decreased only by 3%. In both read and write 

operations, the CPU utilization in the system only increased 

marginally. These experiments clearly suggest that Bastion 

can be integrated in existing commercial storage systems to 

strengthen the security of these systems under key 

exposure, without affecting performance.  

5. RELATED WORK  
To the best of our knowledge, this is the first work that 

addresses the problem of securing data stored in multicloud 

storage systems when the cryptographic material is 

exposed. In the following, we survey relevant related work 

in the areas of deniable encryption, information dispersal, 

all-or-nothing transformations, secretsharing techniques, 

and leakage-resilient cryptography.  

Deniable Encryption  

Our work shares similarities with the notion of  

“sharedkey deniable encryption” [9], [14], [18]. An 

encryption scheme is “deniable” if—when coerced to reveal 

the encryption key—the legitimate owner reveals “fake 

keys” thus forcing the ciphertext to “look like” the 

encryption of a plaintext different from the original one—

hence keeping the original plaintext private. Deniable 

encryption therefore aims to deceive an adversary which 

does not know the “original” encryption key but, e.g., can 

only acquire “fake” keys. Our security definition models an 

adversary that has access to the real keying material.  

Information Dispersal  

Information dispersal based on erasure codes [30] has been 

proven as an effective tool to provide reliability in a number 

of cloud-based storage systems [1], [2], [20], [33]. Erasure 

codes enable users to distribute their data on a number of 

servers and recover it despite some servers failures.  

Ramp schemes [7] constitute a trade-off between the 

security guarantees of secret sharing and the efficiency of 

information dispersal algorithms. A ramp scheme achieves 

higher “code rates” than secret sharing and features two 

thresholds t1,t2. At least t2 shares are required to reconstruct 

the secret and less than t1 shares provide no information 

about the secret; a number of shares between t1 and t2 leak 

“some” information.  

All or Nothing Transformations  

All-or-nothing transformations (AONTs) were first 

introduced in [26] and later studied in [8], [12]. The 

majority of AONTs leverage a secret key that is embedded 

in the output blocks. Once all output blocks are available, 

the key can be recovered and single blocks can be 

inverted. AONT, therefore, is not an encryption scheme 

and does not require the decryptor to have any key 

material. Resch et al. [25] combine AONT and 

information dispersal to provide both faulttolerance and 

data secrecy, in the context of distributed storage systems. 

In [25], however, an adversary which knows the 

encryption key can decrypt data stored on single servers. 
This module is opposite of previous module here first to 

creak the file then collect the binary message from the 

LSB bits then every 8 bit once the binary bits is convert 

into ASCII value then these ASCII values are convert into 

messages REFERENCES  



[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. 

Reiter, and J. J. Wylie, “Fault-Scalable Byzantine 

Fault-Tolerant  

Services,” in ACM Symposium on Operating Systems 

Principles (SOSP), 2005, pp. 59–74. [2] M. K. Aguilera, R. 

Janakiraman, and L. Xu,  

“Using Erasure Codes Efficiently for Storage in a 

Distributed System,” in International Conference on 

Dependable Systems and Networks (DSN), 2005, pp. 

336–345.  

  

  

[3] W. Aiello, M. Bellare, G. D. Crescenzo, and R. 

Venkatesan, “Security amplification by composition: The 

case of doublyiterated, ideal ciphers,” in Advances in 

Cryptology (CRYPTO), 1998, pp. 390–407. [4] C. Basescu, 

C. Cachin, I. Eyal, R. Haas, and M. Vukolic, “Robust Data 

Sharing with Keyvalue Stores,” in ACM SIGACTSIGOPS 

Symposium on Principles of Distributed Computing 

(PODC), 2011, pp. 221–222. [5] A. Beimel, “Secret-sharing 

schemes: A survey,” in International Workshop on Coding 

and Cryptology (IWCC), 2011, pp. 11–46.  

[6] A. Bessani, M. Correia, B. Quaresma, F. André, and P. 

Sousa, “DepSky: Dependable and Secure Storage in a 

Cloud-ofclouds,” in Sixth Conference on Computer 

Systems (EuroSys), 2011, pp. 31–46.  


	1. INTRODUCTION
	2. Encryption and decryption modes
	3. SYSTEM AND SECURITY MODEL
	3.1  System Model
	3.2  Adversarial Model
	3.3  (n − λ)-CAKE Security

	4. IMPLEMENTATION AND EVALUATION
	4.1  Implementation Setup
	4.2  Evaluation Results
	4.3  Deployment within HYDRAstor

	5. RELATED WORK

