
 

ENHANCE SECURITY AND ACTIVE 

UPDATION USING MULTI-KEYWORD 

RANKED SEARCH OVER CLOUD  
R.Pavithra , Dr.R.Asokan 

P.G Student, Department of Computer science and Engineering, Kongunadu College of Engineering and Technology . 

Professor & Principal , Department of Computer science and Engineering, Kongunadu College of Engineering and Technology. 

Tamilnadu. India. 

pavipsmn@gmail.com 

principalkncet@gmail.com 

 

---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - In cloud computing, more and more data owners are 

motivated to outsource their data to cloud servers for great 

convenience and reduced cost in data management. However, 

concerns of sensitive information on cloud potentially cause privacy 

problems. The security will be maintained at both the sides of data 

owner and data user and also provide fast retrieval of the documents. 

Proposed system, will focus on addressing data privacy issues to 

implement Asymmetric Searchable Encryption (ASE) allow retrieval 

of encrypted data over cloud. The KNN Algorithm is utilized to 

encrypt the index tree vectors and meanwhile ensure accurate 

relevance score calculation between encrypted index and query 

vectors. To sub-linear search time and deal with the deletion and 

insertion of documents flexibly. To supports dynamic update 

operations like deletion and insertion of documents in the cloud 

server through data owner. 

Key Words:  keyword search, cloud computing, dynamic update, 

Greedy breathe first search, security. 

1. INTRODUCTION  

In enterprise IT infrastructure which can organize the large amount of 

computing resources uses the concept of cloud computing. Those types 

of features will attracting features both individuals and organizations 

are motivated to outsource their data to the cloud instead of purchasing 

mechanism. More sensitive information (e-mails, health records, govt 

documents...etc)to be outsourced to the cloud. Cloud computing have 

the cloud service providers (CS)will keep the information to the users 

may access the owner sensitive information’s without any 

authentication. For those type of security concern to improve the 

general approach to protect the data in confidential manner. In order to 

resolve the problem to include the authenticate checking for both the 

data owner and data user. Encryption scheme will used to encrypted 

data as both the sides and applied the keyword based searching. Some 

dynamic approach will be developed to support insert and deletions on 

document collection. This paper will propose the tree based search 

algorithm and also the keyword search using greedy breath first search 

and dynamic operation supporting secure ranked search. 

 

 

 

1.1 Existing System 

 

With the occurrence of cloud services progressively receptive data 

information are being integrated into the cloud server to guard seclusion 

and combat unsolicited accesses, susceptible data has to be encrypted 

earlier than outsourcing so as to offer end-to-end data privacy declaration 

in the cloud and beyond. However data encryption creates efficient data 

utilization a very challenging assignment specified that there could be a 

huge amount of outsourced data files. Besides, in cloud computing data 

owners may contribute to their subcontracted data with a huge number of 

users, who might give anything for only retrieve assured specific data 

files they are interested in during a given session. One of the most 

admired techniques to do so is through keyword-based investigates. Such 

keyword search system permits users to selectively related in plaintext 

investigate scenarios. Regrettably, data encryption, which restricts users 

ability to execute keyword search and further claims the shield of 

keyword privacy, creates the conventional Plaintext search techniques 

fail for encrypted cloud data. 

 

1.2 Proposed system 

 

This paper proposes a protected tree-based search format over the 

encrypted cloud information, which maintains dynamic operation and 

multi keyword ranked explore on the document set. Specially, the 

vector space replica and the generally-used “term frequency (TF) × 

inverse document frequency (IDF)” representation are collective in the 

index structure and query creation to offer multi keyword ranked 

search. In order to obtain high search efficiency, we construct a tree-

based index constitution and offer a “Greedy Breath-first Search” 

technique based on this index tree. Due to the particular arrangement of 

our tree-based index, the proposed search system can flexibly attain 

secondary-linear search time and treaty with the insertion and deletion 

of documents. The protected kNN algorithm is used to query vectors 

and encrypt the index, and in the meantime make certain accurate 

significance score calculation between query vectors and encrypted 

index. 

 

Advantages of Proposed System: 

1.To offer not only accurate result ranking and multi-keyword query , 

but also active modernize on information data document set. 

2.Enhanced searching competence with solitude preserving. 

 

2. SYSTEM ARCHITECTURE 

 



 

Fig -1: Architecture diagram 

 
Cloud Data owner is insist to provide their details such as Name, 

Password, Email, Gender and Location. After Registration, a Unique key 
is generated and it sent to the Corresponding Email Id. Using this unique 
Key and Login Credentials, Data Owner can login their Account to File 
Upload .Data Owner can upload files such as Image, Documents such as 
.txt, .pdf etc…After uploading file to Database, Files are arranged in 
Tree Index manner using Tree index algorithm. After the File is 
uploaded user can update or delete the file. Every Deletion or Updation 
tree index gets re-arranged. 

 
3. ALGORITHMS 

3.1 Tree Index Algorithm 

B-Tree is a self-balancing explore tree. In most of the supplementary 
self-balancing explore trees (like Red Black and AVL Trees), it is 
presumed that everything is in main memory. To appreciate employ of 
B-Trees, we have to think of enormous amount of information that 
cannot fit in main memory. When the number of keys is high, the data is 
examined from disk in the variety of blocks. Disk access instance is 
extremely high evaluated to main memory access time. The major idea 
of using B-Trees is to diminish the number of disk accesses. the majority 
of the tree processes (search, insert, delete, max, min..etc) require O(h) 
disk accesses where h is height of the tree. B-tree is a fat tree. Height of 
B-Trees is kept low by putting maximum achievable keys in a B-Tree 
node.  

 Properties 

 If p is an internal node, it also holds  n[p] + 1 pointers c1 [p], c2[p], . 
. . , cn[p]+1[p] to its children. Leaf nodes have no children, so 
their ci fields are indeterminate. 

 All leaf has the related intensity, which is the tree's height h. 

 Every node p has the next fields: 

o a. n[p], the number of keys currently stored in node x, 

o b. the n[p] keys themselves, accumulated in non falling 
order: key1[p]  key2[p]      keyn[p][p], and 

o c. leaf [p], a Boolean value that is TRUE if p is a leaf 
and FALSE if p is an interior node. 

 The keys keyi[p] separate the ranges of keys stored in every subtree: 
if ki is any key accumulated in the subtree with root ci[p], then 

k1 key1[p] k2 key2[p]  keyn[x][p] kn[p]+1 . 

 There are lower and upper bounds on the number of keys a node can 
included. These bounds can be stated in terms of a connected 
integer t  2 described the smallest amount degree of the B-tree: 

o a. Every node additional than the root should have as a 
minimum t - 1 key. Every interior node other than the root 

thus has  least amount t children. If the tree is nonempty, the 
root should have as a minimum single key. 

o b. all node can hold at most 2t - 1 keys. Therefore, an inner 
node can have at most 2t children. We say that a node is full if 
it contains exactly 2t - 1 keys. 

 The simplest B-tree occurs when t = 2. each inner node then has 
moreover 2, 3, or 4 children, and we have a 2-3-4 tree. In put 
into practice, however, much superior values of t are 
characteristically used. 

 

Search B-tree Algorithm: 

B-TREE-SEARCH(p, k) 

 1   i  1 

 2   while n[p] and k keyi[x] 

 3       doi i + 1 

 4   ifi n[p] and k = keyi[p] 

 5      then return (p, i) 

 6   ifleaf [p] 

 7      then return NIL 

 8      else DISK-READ(ci[p]) 

 9           return B-TREE-SEARCH(ci[p], k) 

 

3.2 Build index tree Algorithm 

Input: The document collection F = {f1; f2; …. fn} with 

the identifiers FID = {FID|FID = 1; 2…..; n}. 

Output: the index tree T 

1  for each document fFID in F do 

2  Construct a leaf node u for fFID, with u:ID = 

                  GenID(), u:Pl = u:Pr = null, u:FID = FID, and 

D[i] = TFfFID;wi for i = 1;….;m; 

3  Insert u to CurrentNodeSet; 

4  end for 

5  while the number of nodes in CurrentNodeSet is 

larger than 1 do 

6  if the number of nodes in CurrentNodeSet is 

even, i.e. 2h then 

7  for each pair of nodes u′ and u′′ in 

CurrentNodeSet do 

8  Generate a parent node u for u′ and u′′, with 

u:ID = GenID(), u:Pl = u′, u:Pr = u′′, u:FID = 

0 and D[i] = max{u′:D[i]; u′′:D[i]} for each 

i = 1; :::;m; 

9  Insert u to TempNodeSet; 

10  end for 

11   else 

12  for each pair of nodes u′ and u′′ of the former 

(2h − 2) nodes in CurrentNodeSet do 

13  Generate a parent node u for u′ and u′′; 

14  Insert u to TempNodeSet; 

15  end for 

16  Create a parent node u1 for the (2h − 1)-th and 

2h-th node, and then create a parent node u for 

u1 and the (2h + 1)-th node; 

17  Insert u to TempNodeSet; 

18  end if 

19  Replace CurrentNodeSet with TempNodeSet and 

then clear TempNodeSet; 

20  end while 

21  return the only node left in CurrentNodeSet, namely,the 

root of index tree T ; 
 

 

3.3 Greedy Breadth First Algorithm 



 Breadth First Search algorithm(BFS) traverses a graph in a 
breadth wards action and utilizes a queue to keep in mind to get the next 
vertex to start a search when a dead end happens in a few iteration. 

Rules of Breadth First Search: 

 Call adjacent unvisited vertex. Mark it visited. Display it. Insert 
it in a queue. 

 

 If no adjacent vertex establish, take away the first vertex from 
queue. 

 Repeat Rule 1 and Rule 2 pending queue is empty. 

Algorithm: 

IF root is NULL 

 Then create root node 

Return 

If root node exists then 

 Compare the data with note data 

 While until insertion position is located   

      If data is greater then node data 

     Go to Rightsubtree 

     Else 

         Go to Leftsubtree 

 End while 

    Insert data 

Endif 

 

4.MODULES 

4.1 Login and Registration 

 Used to checking the cloud user  

 Register user only use this application for the security purpose. 

 All the information about the user are stored in the cloud server 
and maintain.  

 New user registers to the use this application. 

 

4.2 File uploading 

Once the registration completed owner candidates can upload 

the documents in the format name with the relevant keyword for the 

purpose of handling the searching process. Data Owner can upload files 

such as Image, Documents such as .txt,.pdf etc..After uploading file to 

Database, Files are arranged in Tree Index manner using Tree index 

algorithm. The file uploading finally will show the document upload 

successful message to the owner. 

 

4.3 Encrypted index tree construction 

In the process of index construction, to first generate a tree 

node for each document in the collection. These nodes are the leaf 

nodes of the index tree. Then, the internal tree nodes are generated 

based on these leaf nodes. 

 

4.4 Search process 

Greedy breath first search will provide the sub-linear 

search to fast access. They do the keyword based search in level by 

level manner in the index tree.  

 

4.5 Dynamic update operation 

To supports dynamic update operations like deletion and 

insertion of documents in the cloud server through data owner. 

 

5. PERFORMANCE EVALUATION 

 

Chart -1: Performance implementation 

 

 
Chart -2: Comparison 

 

 
 

Fig-2: Registration 

 

 
Fig -3: File uploading  



 
 

Fig 3:Data Owner login 

 

6. CONCLUSION 

 

In this paper, for the earliest time we define and solve the difficulty of 

multi-keyword ranked explore over encrypted cloud informatics data, 

and establish a diversity of solitude necessities. Among a variety of 

multi-keyword semantics, we choose the competent similarity compute 

of “Coordinate matching,” i.e., as many matches as probable, to 

successfully capture the significance of outsourced documents to the 

uncertainty keywords, and use “inner product similarity” to 

quantitatively estimate such similarity determined. Then, we give two 

enhanced MRSE schemes to realize a variety of stringent privacy 

necessities in two dissimilar hazard models. We also examine some 

additional Enhancements of our ranked search method, as well as 

supporting extra explore semantics, i.e., TF × IDF, and dynamic data 

processes. Thorough study investigating privacy and efficiency 

assurances of proposed method is given, and experiments on the real-

world information set demonstrate our proposed schemes initiate low 

overhead on both communication and computation . 

 

 

REFERENCES 

 

[1] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and               

H. Li, “Privacy-preserving multi-keyword text search in the cloud 

supporting similarity-based ranking,” in Proc. 8th ACM SIGSAC 

Symp. Inf., Comput. Commun. secur., 2013, pp. 71–82. 

[2]  S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable 

symmetric encryption,” in Proc. ACM Conf. Comput. Commun.Secur., 

2012, pp. 965–976. 

[3]   N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving 

multi-keyword ranked search over encrypted cloud data,” in Proc. IEEE 

INFOCOM, Apr. 2011, pp. 829–837.  

[4]  W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li  

“Verifiable Privacy-Preserving Multi-Keyword Text Search in the 

Cloud Supporting Similarity-Based Ranking” IEEE ,VOL. 25, No- 11, 

Nov2014. 

[5]  David Cash et al. “Dynamic Searchable Encryption in Very-Large 

Databases: Data Structures and Implementation” Rutgers 

University,University of California, Irvine ,IBM Research. 

[6]  S. Kamara, C. Papamanthou “ Parallel and Dynamic Searchable 

Symmetric Encryption” Microsoft Research, senyk@microsoft.com 

[7]   K. Ren, C.Wang, Q.Wang et al., “Security challenges for the 

public cloud,” IEEE Internet Computing, vol. 16, no. 1, pp. 69–73, 

2012. 

[8] C. Gentry, “A fully homomorphic encryption scheme,” 

Ph.D.dissertation, Stanford University, 2009. 

[9]   D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, 

“Public key encryption with keyword search,” in Advances in 

Cryptology-Eurocrypt 2004. Springer, 2004, pp. 506–522.  

[10]   L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, 

“A break in the clouds: towards a cloud definition,” ACM SIGCOMM 

Comput. Commun. Rev., vol. 39, no. 1, pp. 50–55, 2009.  

[11] S. Kamara and K. Lauter, “Cryptographic cloud storage,” in 

RLCPS, January 2010,LNCS. Springer, Heidelberg.  

[12]  A Singhal, “Modern information retrieval: A brief overview,” 

IEEE Data Engineering Bulletin, vol. 24, no. 4, pp. 35–43, 2001.  

[13] I. H. Witten, A. Moffat, and T. C. Bell, “Managing 

gigabytes:Compressing and indexing documents and images,” Morgan 

Kaufmann Publishing, San Francisco, May 1999.  

[14] D. Song, D. Wagner, and A. Perrig, “Practical techniques for 

searches on encrypted data,” in Proc. of S&P, 2000.  

[15] E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive, 2003, 

http://eprint.iacr.org/2003/216.  

[16] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword 

searches on remote encrypted data,” in Proc. of  

ACNS, 2005.  


