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An Access Control Model for Multiuser Relationships In Online Social  

Networks  
  

  
Abstract - Users and resources in online social networks (OSNs) are interconnected via various types of 

relationships. In particular, user-to-user relationships form the basis of the OSN structure, and play a significant 

role in specifying and enforcing access control. Individual users and the OSN provider should be enabled to 

specify which access can be granted in terms of existing relationships. In this paper, we propose a novel user-to-

user relationship-based access control (UURAC) model for OSN systems that utilizes regular expression 

notation for such policy specification. Access control policies on users and resources are composed in terms of 

requested action, multiple relationship types, the starting point of the evaluation, and the number of hops on the 

path. We present two path checking algorithms to determine whether the required relationship path between 

users for a given access request exists. We validate the feasibility of our approach by implementing a prototype 

system and evaluating the performance of these two algorithms.  

  
  Index Terms—Social network, access control, security model, policy specification  

  
  
  
  

  1  INTRODUCTION  

Online social networks (OSNs) have become ubiqui-tous 

in daily life and have tremendously changed how people 

connect, interact and share information with each other. 

Users share an enormous amount of content with other 

users in OSNs for a variety of purposes. The sharing and 

communications are based on social connections among 

users, namely relation-ships. Since most users join OSNs 

to keep in touch with people they already know, they often 

share a large amount of sensitive or private information 

about themselves. Given the rising popularity of OSNs and 

the explosive growth of information shared on them, OSN 

users are exposed to potential threats to secu-rity and 

privacy of their data. Security and privacy incidents in 

OSNs have increasingly gained attention from both media 

and research community [3], [21]. These incidents 

highlight the need for effective access control that can  

  protect data from unauthorized access in OSNs.  

Access control in OSNs presents several unique 

characteristics different from traditional access con-trol. In 

mandatory and role-based access control, a system-wide 

access control policy is typically spec-ified by the security 

administrator. In discretionary access control, the resource 

owner defines access con-trol policy. However, in OSN 

systems, users expect to regulate access to their resources and  

  activities related  

   
  

   
  
  

  
to themselves. Thus access in OSNs is subject to userspecified 

policies. Other than the resource owner, some related users 

(e.g., user tagged in a photo owned by another user, parent of a 

user) may also expect some control on how the resource or user 

can be exposed. To prevent users from accessing unwanted or 

inappropriate content, user-specified policies that regulate how 

a user accesses information need to be considered in 

authorization as well. Thus, the system needs to collect these 

individualized partial policies, from both the accessing users 

and the target users, along with the systemspecified policies and 

fuse them for the collective control decision.    
In OSN, access to resources is typically controlled based 

on the relationships between the accessing user and the 

controlling user of the target found on the social graph. This 

type of relationship-based access control (to which we refer 

as ReBAC) [22] takes into account the existence of a 

particular relationship or a particular sequence of 

relationships between users and expresses access control 

policies in terms of such user -to-user (U2U) relationships.  

Most existing OSN systems enforce a rudimentary and 

limited relationship-based access control mecha-nism, offering 

users the ability to choose from a pre-defined policy 

vocabulary, such as “public”, “private”, “friend” or “friend of 

friend”. Google+ and Facebook introduced customized 

relationships, namely “circle” and “friend list”, providing users 

richer options to differentiate distinctly privileged user groups. 

Mean-while, researchers have proposed more advanced 

relationship-based access control models in online . 

 Although only having the “friend” relationship type, [19] 

provides additional topology-based policies, such as known 

quantity, common friends and stranger of more than k 

distance. While these works have their own advantages, one 

of the common drawbacks they share is that they do not allow 

different relationship types 

and multiple possible types on  

  each hop.  
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In this paper, we propose a novel user-to-user 

relationshipbased access control (UURAC) model, al-lowing 

users the ability to express more sophisticated and fine-

grained access control policies in terms of type pattern and 

depth of relationships among users in the network. Type 

pattern captures the pattern of relationship types along the 

relationship path from the accessing user to the target user. 

We adopt a regular expression-based approach for policy 

specification. Sequence of characters and quantification 

notations are employed to denote relationship paths, which 

express indirect relationships among users, such as f , f+, cf?, 

etc. The use of regular expression and multiple relationship 

types gives the policy language the ability to specify more 

succinct policies than pre-vious models did. To the best of our 

knowledge, this is the first relationship-based access control  

  model for OSNs with such capability.  

The rest of this paper is organized as follows. Section 2 

provides motivation and context for our work, discusses 

related work, and identifies our con-tributions. In section 

3, we present the fundamental structure of our UURAC 

model. A policy language for expressing access control 

policies is articulated in section 4. In section 5, we 

introduce path checking algorithms to evaluate a given 

access control policy. Section 6 describes prototype 

implementation and experimental results. Section 7  

concludes the paper and outlines some future work.  

  

  2  MOTIVATION  

This section discusses characteristics of access control in 

OSNs, related work, our approach, and outlines our 

contributions.  

  

 2.1 Characteristics of Access Control for OSNs OSN is 

becoming the most prevalent manifestation of usergenerated 

content platforms. Photos, videos, blogs, web links and other 

kinds of information are posted, shared and commented by 

OSN users. Various types of user interactions, including 

chatting, private messaging, poking, social games, etc., are 

also embed-ded into these systems. Below, we discuss some 

essen-tial characteristics [31], [32] that need to be  

  supported in access control solutions for OSN systems.  

Policy Individualization. OSN users may want to 

express their own preferences on how their own or related 

contents should be exposed. A system-wide access control 

policy such as we find in mandatory and role-based access 

control, does not meet this  

  

  

need. Access control in OSNs further differs from discretionary 

access control in that users other than the resource owner are also 

allowed to configure the policies of the related resource. In 

addition, users who are related to the accessing user, e.g. parent 

to child, may want to control the accessing user’s actions. 

Therefore, the OSN system needs to collectively utilize these 

individualized policies from users related to the accessing user or 

the target, along with the system -specified policies for control 

decisions.  

User and Resource as a Target. Unlike traditional user 

access where the access is against target resource, activities 

such as poking and friend recommendations are performed 

against other users.    

User Policies for Outgoing and Incoming Actions. 

Notification of a particular friend’s activities could be 

bothersome and a user may want to block it. This type of 

policy is captured as incoming action policy. Also, a user may 

want to control her own or other users’ activities. For 

example, a user may restrict her own access from all violent 

content or a parent may not want her child to invite her co-

worker as a friend. This type of policy is captured as an 

outgoing action policy. In OSN, it is necessary to support 

policies for both types of actions.  

Necessity for Relationship-based Access Control. 

Typically, the number of users in an OSN is very large and 

the amount of resources they own is usually even larger. 

Moreover, the relationships among users are changing 

frequently and dynamically. A user may not be able to know 

either the user name space of the entire network or all her 

possible direct or indirect contacts. Therefore, it is infeasible 

for her to specify access control policies for all of the possible 

accessing users. Even if she knows them all, it takes enormous 

amount of time for her to explicitly specify policies for all of 

them one by one as in discretionary access control. Role-

based access control does not fit well in this situation either, 

because privileged user groups are different for each user. 

Thus different users’ priv-ileged user groups cannot be 

assigned to a unified set of roles. Overall using traditional 

access control approaches is cumbersome and inadequate for 

OSN systems.    

Instead, access control in OSNs is mainly based on 

relationships among users and resources. For exam-ple, only 

Alice’s direct friends can access her blogs, or only user who 

owns the photo or tagged users can modify the caption of the 

photo. Depth is another significant parameter, since people 

tend to share re-sources with closer users (e.g., “friend”, or 

“friend of friend”).  

  

2.2  Prior Access Control Models for OSNs  

  

The large and complex collections of user data in OSNs 

require usable and fine-grained access con-trol solutions to 

protect them [22], [23]. Gates [22]    

  

  

discusses the access control requirements for OSN 

environments, where she argues that one of the key  

  requirements is relationship-based access control.  

A formal model for access control in Facebook-like 

systems was developed by Fong et al [19], which treats 

access control as a two-stage process, namely, reaching the 

search listing of the resource owner and accessing the 
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resource, respectively. Reachabil-ity of the search listings 

is a necessary condition for access. Although lacking 

support for directed relationships, multiple relationship 

types and trust metric of relationships, this model allows 

expression of arbitrary topology-based properties, such as  

“k-common friends” and “k-clique”, which are beyond  
what Facebook and other commercial OSNs offer.  

In [18], Fong proposed a formal model for social 

computing applications, in which authorization de-cisions 

are based on user-to-user relationships. This model 

employs a modal logic language for policy specification. 

Fong et al extended the policy language and formally 

characterized its expressive power [20]. In contrast to [19], 

this model allows multiple relation-ship types and 

directional relationships. Relationships and authorizations 

are articulated in access contexts and context hierarchy to 

support sharing of relation-ships among contexts. Bruns et 

al [5] later improved [18], [20] by using hybrid logic to 

enable better effi-ciency in policy evaluation and greater 

flexibility of atomic formulas. [5], [20] also support 

policies such as “k-common friends” and “k-clique” in  

  addition to path policies.  

Inspired by research in trust and reputation sys-tems, some 

early solutions proposed by Kruk et al [28] and Carminati et 

al [10], [11] identified aggregated trust value, denoting the 

level of relationship, along with relationship type and depth 

on a path from the resource owner to the accessing user as 

parameters for authorization. While Kruk’s work only 

considers one relationship type, Carminati’s work allows 

multiple relationship types but only supports trust 

computation of a relationship path of a single type at a time. 

Carminati et al also proposed a semi-decentralized 

architecture, where access rules are specified in terms of 

relationship type, depth and trust metrics by indi-vidual users 

in a discretionary way [12]. The system features a centralized 

certificate authority to assert the validity of relationship paths, 

while access control  

  enforcement is running on the decentralized user side.  

In [8], [9], an access control model for OSNs utilizes 

semantic web technologies. Unlike other works, this model 

exhibits different relationships between users and resources. 

It defines three kinds of access poli-cies with the Web 

Ontology Language (OWL) and the Semantic Web Rule 

Language (SWRL), namely authorization, administration and 

filtering policies. Similar to [8], [9], Masoumzadeh et al [29] 

proposed ontology-based social network access control. Their 

model captures delegation of authority and empowers  

  

  

both users and the system to express finer-grained access 

control policies.    

It is worth noting that Crampton et al [17] recently 

proposed a variant of ReBAC model for applications beyond 

OSNs that specifies policies in terms of path conditions, 

which are similar to regular expressions.    

Several works resort to attribute information to address access 

control for OSNs. Persona [2], EASiER    

[27] and the DBRA framework [4] are three representatives 

of attribute-based encryption (ABE) schemes for protecting 

shared data in OSNs. Basically, users define relationships or 

groups by assigning attributes to them, and resources are 

encrypted with attribute-based policies. Keys are distributed 

to groups or relationships so that only users with necessary at-

tributes will be able to decrypt the data. In addition to 

attributes, [4] also allows constraints on distance be-tween 

users on the social graph. These ABE schemes usually work 

as a third-party application and require shared content to be 

stored in an encrypted form, which consequently limits the 

functionality of OSNs. Key distribution and revocation is also 

an issue in practice, since relationships between users in 

OSNs are changing dynamically.  

  

2.3  Comparison of Access Control Models for OSNs The 

first four columns of Table 1 summarize the salient 

characteristics of the models discussed above. The fifth 

column gives these characteristics for the new UURAC model 

to be defined in this paper.    

All the models deal only with U2U relationships, except [8], 

[9] also recognize U2R (user-to-resource) relationships 

explicitly. U2R relationships can be cap-tured implicitly via U2U 

with the last hop being U2R. While we believe that explicit 

treatment of U2R and R2R (resource-to-resource) relationships 

is important, this is beyond the scope of this paper. Fong et al’s 

[5], [19], [20] allow users to express policies such as “k-common 

friends” and “k-clique”. While the proposed model in this paper 

only permits specification of paths, the model can be extended to 

capture this type of policies by utilizing attribute information of 

users and relationships as shown in [15].    

In terms of expressive power, the regular expression path 

policy with hopcount proposed in this work is equal to the 

above logic based approaches. However, it is relatively easier 

and more efficient to use. A single regular expression path 

pattern can express multiple paths without enumerating every 

possible path. For instance, (f ; 3) can cover three enumeration 

paths f; ff; and f ff. Details about the policy specifications are 

provided later in the paper.  

  

 3  UURAC MODEL FOUNDATION  

In this section, we develop the foundation of UURAC 

including basic notations, access control model components 

and social graph model.    
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 3.1  Basic Notations  

  

We write to denote the set of relationship type specifiers, 

where = f 1, 2,: : :, n, 1 
1
, 2 

1
,: : :, n 

1
g. Each relationship  

  type specifier is represented by  

a character recognizable by the regular expression parser.  

Given a relationship type i 2 , the inverse of the  

relationship is i 
1
 2 .  

We differentiate the active and passive forms of an 

action, denoted action and action 
1
, respectively. If Alice 

pokes Bob, the action is poke from Alice’s viewpoint, 

whereas it is poke 
1
 from Bob’s viewpoint.  

  

  3.2  Access Control Model Components  

  

Fig. 1: Model Components  

  

The model comprises five categories of components as  
shown in Figure 1.  

Accessing User (ua) represents a human being who 

performs activities. An accessing user carries access  

  control policies and U2U relationships with other users.  

Each Action is an abstract function initiated by 

accessing user against target. Given an action, we say it is 

action for the accessing user, but action 
1
 for the recipient 

user or resource.  

  

  

Target is the recipient of an action. It can be either target user 

(ut) or target resource (rt). Target user has her own policies and 

U2U relationship information, both of which are used for 

authorization decisions. Target resource has U2R relationship 

(i.e., ownership) with controlling users (uc). An accessing user 

must have the required U2U relationships with the control -ling 

user in order to access the target resource.  

Access Request denotes an accessing user’s request of a 

certain type of action against a target. It is modeled as a tuple 

< ua, action, target >, where ua 2 U is the accessing user, 

target is the user or resource that ua tries to access, whereas 

action 2 Act specifies from a finite set of supported functions 

in the system the type of access the user wants to have with 

target. If ua requests to interact with another user, target = ut, 

where ut 2 U is the target user. If ua tries to access a resource 

owned by another user uc, target is resource rt 2 R where R is 

a finite set of resources in OSN.    

TABLE 1: Comparison of Access Control Models for OSNs  

  Fong [19]  Fong [5], [18], [20]  Carminati  Carminati [8],  UURAC  

         [12]  [9]    

Relationship Category  
Multiple Relationship Types  

     

X    

 

X  X  X  
Directional Relationship U2U 

Relationship  X  
X    
X    

 X  
X  X  

X  
X  

U2R Relationship           X    

Model Characteristics 
Policy Individualization  

X  

  

X    

 

X  X  X  
User & Resource as a Target           (partial)  X  

Outgoing/Incoming Action Policy           (partial)  X  

Relationship Composition Relationship 

Depth  
  

0 to n  

    

0 to n    

   

1 to n  

  

1 to n  

  

0 to n  
Relationship Composition  f, f of f;  exact  type  path of same  exact type se-  exact type sequence,  

  common  sequence;    type  Quence  path pattern of dif-  

  friends,  common  friends,      ferent types  

   clique  

  

clique  (except 
[18])    
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Fig. 2: Access Control Policy Taxonomy  

  

Policy defines the rules according to which autho-rization is 

regulated. As shown in Figure 2, policies can be categorized into 

user-specified and system-specified policies, with respect to who 

defines the policies. System-specified policies (SP ) are system-

wide general rules enforced by the OSN system; while user-

specified policies are applied to specific users and resources. 

Both user - and system-specified  

  

  

policies include policies for resources and policies for users. 

Policies for resources are used to spec-ify who can access the 

resources, while policies for users regulate how users can 

behave regarding an action. User-specified policies for a 

resource are called target resource policies (T RP ), which are 

policies for incoming actions. User-specified policies for 

users can be further divided into accessing user policies (AU 

P ) and target user policies (T U P ), which correspond to 

user’s outgoing and incoming access (see examples in Section 

2.1), respectively. Accessing user policies, also called 

outgoing action policies, are associated with the accessing 

user and regulate this user’s outbound ac-cess. T arget user 

policies, also called incoming action policies, control how 

other users can access the target user. Note that system-

specified policies do not have separate policies for incoming 

and outgoing actions, since the accessor and target are 

explicitly identified.  

  

 3.3  Modeling Social Graph  

  

As shown in Figure 3, an OSN forms a directed labeled 

simple graph
1
 with nodes (or vertices) rep-resenting users 

and edges representing user-to-user relationships. We 

assume every user owns a finite set of resources and 

specifies access control policies for the resources and 

activities related to her. If an accessing user has the U2U 

relationship required in the policy, the accessing user will 

be granted per-mission to perform the requested action  

 against the corresponding resource or user.  We 

model the social graph of an OSN as a triple  G =< 

U; E;  >:  

U is a finite set of registered users in the system, 

represented as nodes (or vertices) on the graph. We  

use the terms user and node interchangeably from 

now   on.  

= f 1; 2; ::; n 1 
1
; 2 

1
; ::; n 

1
g denotes a fi-nite set of 

relationship types, where each type specifier denotes 

a  

  relationship type supported in the system.  

E U U , denoting social graph edges, is a set of  

 existing user relationships.  

Since not all the U2U relationships in OSNs are mutual, 

we define the relationships E in the system as directed. For 

every i 2 , there is i 
1
 2 representing the inverse of 

relationship type i. We do not explicitly show the inverse 

relationships on the social graph, but assume the original 

relationship and its inverse twin always exist 

simultaneously. Given a user u 2 U, a user v 2 U and a  

  relationship type  

2 , a relationship (u; v; ) expresses that there exists a 

relationship of type starting from user u and terminating at 

v. It always has an equivalent form  

  
1. A simple graph has no loops (i.e., edges which start and end on the 

same vertex) and no more than one edge of a given type between any two 

different vertices.  

  

  

Fig. 3: A Sample Social Graph  

  

  

(v; u; 
1
). G =< U; E; > is required to be a simple graph.  

  

 4  UURAC POLICY SPECIFICATIONS  

This section defines a regular-expression based policy 

specification language, to represent various patterns of 

multiple relationship types.  

  

4.1    Path Expression Based Policy  

The user relationship path in access control policies is 

represented by regular expressions. The formulas are based 

on the set of relationship type specifiers. Each specification 

in this language describes a pattern of required relationship 
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types between the accessing user and the target/controlling 

user. We use three kinds of quantification notations that 

represent different occurrences of relationship types: asterisk 

(*) for 0 or more, plus (+) for 1 or more and question mark (?) 

for 0 or 1. The asterisk is commonly known as the Kleene star.  

  

4.2  Graph Rule Specification and Grammar An access 

control policy consists of a requested action, optional target 

resource and a required graph rule. In particular, graph rule is 

defined as (start, path rule), where start denotes the starting 

node of rela-tionship path evaluation, whereas path rule 

denotes a collection of path specs. Each path spec consists of 

a pair (path, hopcount), where path is a sequence of 

characters, denoting the pattern of relationship path between 

two users that must be satisfied, while hopcount limits the 

maximum number of edges on the path.    

Typically, a user can specify one piece of policy for each 

action regarding a user or a resource in the system. Policies 

defined by different users for the same action against same 

target are considered as separate policies. The path rule in 

each policy is composed of one or more path specs, in which 

multiple path specs are connected by disjunction or 

conjunction. For instance, a path rule (f , 3) _ ( , 5)   _ (f c, 

2), where f is friend and c is co-worker, contains disjunction of 

three different pieces of   path specs, of  

which one must be satisfied in order to grant access. Note 

that, there might be a case where only users who do not 

have particular types of relationships with the target are 

allowed to access. To allow such negative 

relationshipbased access control, a boolean negation 

operator over path specs is allowed, which implies the 

non-existence of the specified pair of relationship type 

pattern path and hopcount limit hopcount following :. For 

example, : (f c+,  

5) means the involved users should not have relationship 

of  pattern f c+ within depth of 5 in order to get access.  

Each graph rule usually specifies a starting node, the 

required types of relationships between the start-ing node 

and the evaluating node, and the hopcount limit of such 

relationship path. A grammar describ-ing the syntax of this 

policy language is defined in Table 2. Here, GraphRule 

stands for the graph rule to be evaluated. StartingN ode can 

be either the accessing user ua, the target user ut or the 

controlling user uc, denoting the given node from which 

the required relationship path begins. P ath represents a 

sequence of type specifiers from the starting node to the 

evaluating node. P ath will typically be non-empty. If path 

is empty and hopcount = 0 we assign the special meaning 

of “only me”, which is the only allowed case for empty 

path. Quantif ier captures the three quantification 

characters, which facilitate speci-fying path expressions 

more efficiently and effectively. Given a graph rule from 

the access control policy, this grammar specifies how to 

parse the expression and to extract the containing path 

pattern and hopcount from the expression.  

  

4.3 User- and System-specified Policy Specifica-tions  

  

User-specified policies specify how individual users want 

their resources or services related to them to be released to 

other users in the system. These policies are specific to 

actions against a particular resource or user. 

Systemspecified policies allow the system to specify 

access control on users and resources. Dif-ferent from user 

policies, the statements in system policies are not specific 

to particular accessing user or target, but rather focus on  

  the entire set of users or resource types (see Table 3).  

In accessing user policy, action denotes the requested 

action, whereas (start, path rule) expresses the graph rule.  

Similarly, action 
1
 in target user policy and target resource 

policy is the passive form of the corresponding action applied 

to target user. Target resource policy contains an extra 

parameter uc, representing the con-trolling user of the  

  resource.  

This paper considers only U2U relationships in policy 

specification. In general, there could be one or more 

controlling users who have certain types of U2R 

relationships with the resource and specify policies for the 

corresponding target resource. To access the  

  

resource, the accessing user must have the required 

relationships with the controlling users. The policies 

associated with the target resources are defined on the basis 

of per action per controlling user. For in-stance, when 

querying read access request on rt, all of rt’s target resource 

policies need to be considered in evaluation. Each policy 

specifies a controlling user, with whom the accessing user 

must have the required relationship. Note that in this paper we 

are not intro-ducing the policy administration model, so wh o 

can specify the policy is not discussed.  

System-specified policies do not differentiate the active 

and passive forms of an action. System policy for users has 

the same format as accessing user policy. However, when 

specifying system policy for resources, one system-wide 

policy for one type of access to all resources may not be fine-

grained and flexible enough. Sometimes we need to refine the 

scope of the resources that applied to the policies in terms of 

resource types (r:typename; r:typevalue).
2
 Examples of types 

are (f iletype; photo), (f iletype; statusupdate), (location; T 

exas), etc. Thus, <read, (f iletype, photo), (uc, f , 4)> is a 

system policy applied to all read access to photos in the 

system. When dealing with system policy for resources, we 

can determine the controlling user of the resource through 

some U2R relationships, such as ownership (as shown in 

Figure 1).  

  

  

4.4  Access Evaluation Procedure  

  

Algorithm 1   AccessEvaluation(ua; action; target)  
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 1: (Policy Collecting Phase)  

 2:3:  if targetAUP u =a ’s policy for action, T UP uut then
  

t’s 

policy for action 1,  

SP system’s policy for action  

 4: else    

5: AUP ua’s  policy  for action,  T RP rt’s   policy for  action 
1
,  SP 

system’s  policy for  action; (r:typename; r:typevalue)  
6: (Policy Evaluation Phase)  
7: for all policy in AUP , T UP /T RP and SP do  
8:  Extract graph rules (start, path rule) from policy 

9:  for all graph rule extracted do  
10:  Determine the starting node, specified by start, where  

 the path evaluation starts  
11: Determine the evaluating node which is the other user involved 

in access  
12:  Extract path rules path rule from graph rule  
13:  Extract each path spec path, hopcount from path rule 14: 

 Path-check each path spec using Algorithm 2  
15:  Evaluate the combined result based on conjunctive or 

disjunctive connectives between path specs and negation 

on individual path specs  
16: Compose the final result from the result of each policy  

  

2. There could be combinations of multiple resource types in one policy, 

but for illustration, we only show one resource type per poli
 
  cy.  

  

  

Algorithm 1 specifies how the access evaluation procedure 

works. When an accessing user ua requests an action against 

a target user ut, the system will look up ua’s action policy, ut’s 

action 
1
 policy and the system-specified policy corresponding 

to action. When ua requests an action against a resource rt, the 

system will retrieve all the corresponding policies of rt. 

Although each user can only specify one policy per action per 

target, there might be multiple users specifying policies for 

the same pair of action and target. Multiple policies might be 

collected in each of the three policy sets: AU P , T U P /T RP  

  and SP .  

Example Given the following policies and social graph 

in Figure 3:  

 Alice’s  policy  PAlice:  <  poke,  (ua,  (f ,  3))>  

< poke 
1
, (ut, (f, 1))> < read, (ua, (   , 5))>  

  

Harry’s policy PHarry: < poke, (ua, (cf , 5) _ (f , 5))> 

< poke 
1
, (ut, (f , 2))>  

  

Policy of file2 Pfile2: < read 
1
, Harry, (uc, :(p+, 2)>  

  

  System’s policy PSys: <  poke, (ua, (   , 5))>  

< read, (f iletype; photo), (ua, (   , 5))>  

  

When Alice requests to poke Harry, the system will look 

up the following policies: < poke, (ua, (f , 3))> from PAlice,  < 

poke 
1
, (ut, (f , 2))> from PHarry, and  

< poke, (ua, ( , 5))> from PSys. When Alice requests to  

read photo f ile2 owned by Harry, the policies <read, (ua, ( , 

5))> from PAlice, < read 1, Harry, (u c, :(p+,  

2)> from Pfile2, and < read, photo, (ua, ( , 5))> from PSys  

will be used for authorization.  

For all the policies in the policy sets, the algo-rithm first 

extracts the graph rule (start, path rule) from each policy. 

Once the graph rule is extracted, the system can determine 

where the path checking  

  

  

TABLE 2: Grammar for graph rules  

  
  GraphRule ::= \(" < StartingNode > \; " < P athRule > \)"  

P athRule ::= < P athSpecExp > j < P athSpecExp >< Connective >< P athRule > Connective 
::= _j^  

  P athSpecExp ::= < P athSpec > j: < P athSpec >  
P athSpec ::= \(" < P ath > \; " < HopCount > \)"j\(" < EmptySet > \; " < Hopcount > \)"  

  HopCount ::= < Number >  
P ath ::= < T ypeExp > j < T ypeExp >< P ath > j < T ypeExp > \j" < P ath >  
EmptySet ::= ;  
T ypeExp ::= < T ypeSpecifier > j < T ypeSpecifier >< Quantifier >  
StartingNode ::= uajutjuc  

 T ypeSpecifier ::=  1j 2j::j nj 1 1j 2 1j::j n 1j  where  = f 1; 2; ::; n; 1 
1
; 2 

1
; ::; n 

1
g  

 Quantifier ::= \  "j\?"j\ + "  
 Number ::= [0  9]+  

  

TABLE 3: Access Control Policy Representations  

Accessing User Policy  < action, (start, path rule)>  
Target User Policy  < action 1, (start, path rule)>  
Target Resource Policy  < action 1, uc, (start, path rule)>  
System Policy for User  < action, (start, path rule)>  
System Policy for Resource  < action, (r:typename; r:typevalue), (start, path rule)>  
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evaluation starts (using start), and then extracts every path 

spec path, hopcount (from path rule). Then, it runs a 

pathchecking algorithm (see the next section) for each path 

spec. The path-checking algorithm re-turns a boolean result 

for each path spec. To get the evaluation result of a particular 

policy, we combine the results of all path specs in the policy 

using con-junction, disjunction and negation. At last, the final 

evaluation result for the access request is made by composing 

all the evaluation results of the policies in the chosen policy 

sets.  

  

  

4.5  Discussion  

  

4.5.1  Policy Conflict Resolution  

  

In OSN systems, if multiple users are allowed to specify their 

own policies on a same object or user, policy conflicts become 

inevitable. There are substan-tial prior works on conflict 

resolution of access control policies, especially in distributed 

systems, database systems and collaborative environments. 

Most con-flicts discussed in these works are conflicts between 

positive and negative authorizations (permission vs. 

prohibitions) typically arising due to generality or specificity 

of the applicable policy in a hierarchy. However, in OSNs 

possible policy conflicts arise as policies specified by distinct 

users may carry contrast -ing authorizations.  

With regards to multi-user policy conflicts in OSNs, there are 

several interesting proposals as well. [34] leveraged a game 

theoretic approach to address col-lective policy management in 

OSNs. [24] formulated a multi-party access control model for 

OSNs that mea-sures the tradeoff between privacy and sharing 

with a policy conflict resolution mechanism based on vot-ing 

scheme. [24] has been extended to express other threshold-based 

and strategy-based conflict resolution in [26]. Similar idea can be 

found in another piece of   

their work [25], where conflict detection is also ad-dressed 

in addition to conflict resolution. Carminati et al 

introduced collaborative security policies to express 

privacy concerns from multiple users, which explicitly 

state either of the three strategies, namely “All, One, and 

Majority”, to reach  

  a collaborative decision [6].  

In the proposed work, we consider three simple and 

intuitive approaches to resolve conflicts: disjunctive, 

conjunctive or prioritized. When a disjunctive ap-proach is 

enabled, the satisfaction of any correspond-ing policy is 

sufficient for granting the requested access. In a 

conjunctive approach, the requirements of every involved 

policy should be satisfied in order that the access request 

would be granted. In a prior-itized approach, if, for 

example, parents’ policies get priority over children’s 

policies, the parents’ policies overrule children’s policies. 

While policy conflicts are inevitable in the proposed 

model, we do not discuss this issue in further detail here. 

For simplicity we assume unambiguous system level 

policies are avail-able to resolve conflicts in user-specified 

authorization policies and do not consider user-specified 

conflict resolution policies.  

  

  4.5.2  Syntax  

One observation from user-specified policies is that action 

policy starts from ua whereas action 
1
 policy starts from 

ut. This is because action is done by ua while action 
1
 is 

from ut’s perspective. When hopcount = 0 and path equals 

to empty, it has special meaning of “only me”. For 

instance, < poke, (ua, (;, 0))> says that ua can only poke 

herself, and < poke 
1
, (ut, (;, 0))> specifies ut can only be 

poked by herself. The above two policies give a 

complementary expres-sive power that the regular policies 

do not cover, since regular policies are simply based on 

existing paths  

  and limited hopcount.  

As mentioned earlier, the social graph is modeled as a 

simple graph. Further we only allow simple path with no 

repeating nodes. Avoiding repeating nodes on the 

relationship path prevents unnecessary iterations among 

nodes that have been visited already and unnecessary hops 

on these repeating segments. On the other hand, this 

“norepeating” could be quite useful when a user wants to 

expose her resource to farther users without granting 

access to nearer users. For example, in a professional OSN 

system such as LinkedIn, a user may want to promote her 

resume to users outside her current company, but does not 

want her co-workers to know about it. Note that the two 

distinct paths denoted by f ff c and f c may co-exist 

between a pair of users. Simply specifying f ff c in the 

policy does not avoid someone who also has f c 

relationship with the owner from accessing the resume. In 

contrast, f ff c ^ :(f c) allows the co-workers of the user’s 

distant friends to see the resume, while the co-workers of 

the user’s direct friends f c are not authorized.  

  

In general, conventional OSNs are susceptible to the 

multiple-persona problem, where users can al-ways create a 

second persona to get default permis-sions. Our approach 

follows the default-denial design, which means if there is no 

explicit positive authoriza-tion policy specified, there is no 

access permitted at all. Based on the default-denial 

assumption, negative authorizations in our policy 

specifications are mainly used to further refine permissions 

allowed by the positive authorizations specified (e.g., f c^:(f 

c)). A single negative authorization without any positive 

authorization has the same effect as there is no policy 

specified at all, but it is still useful to restrict future addition 

of positive policies. Nonetheless it is possible for the co-

worker of a direct friend to have a second persona that meets 

the criteria for co-worker of a dis-tant friend and thereby 

acquires access to the resume. Without strong identities we 

can only provide persona level control in such policies. 
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The inclusion of conjunction and negation in gram-mar 

may add extra costs in processing, but it em-powers users to 

define finer-grained or more strict policies. The above 

example path rule f ff c ^ :(f c) shows the utility of the two 

notations. However, this is largely a design decision and we 

will let users decide how to use them efficiently in their 

implementation. If only disjunction exists in a path rule, path 

specs with the same hopcount can be composed into a single 

regular expression prior to evaluation to improve 

performance.  

  

 5  ALGORITHMS  

In this section, we present two algorithms for de-termining if 

there exists a qualified path between two involved users in an 

access request, based on depth-first search (DFS) and 

breadth-first search (BFS) strategies. Then, we provide a 

complexity analysis for both algorithms.    

As mentioned, in order to grant access, relation-ships between 

the accessor and the target/controlling user must satisfy the graph 

rules specified in access control policies regarding the given 

request. We for-mulate the problem as follows: given a social 

graph G, an access request < ua, action, target > and an access 

policy, the system decision module explores the graph and 

verifies the existence of a path between u a and target (or uc of 

target) matching the graph rule  

<  start, path rule >.  

 As shown in Algorithm 2 and 4, the path checking algorithm 

takes as input the social graph G, the path pattern path and the 

hopcount limit hopcount specified by path spec in the policy, the 

starting node s specified by start and the evaluating node t which 

is the other user involved, and returns a boolean value as output. 

Note that path is non-empty, so this algo-rithm only copes with 

cases where hopcount 6= 0. The starting node s and the 

evaluating node t can be ei-ther the accessing user or the 

target/controlling user,    

depending on the given policy. The algorithm starts by 

constructing a DFA (deterministic finite automata) from 

the regular expression path. The REtoDF A() function 

receives path as input, and converts it to an NFA 

(nondeterministic finite automata) then to a DFA, by using 

the well-known Thompson’s Algo-rithm [35] and Subset 

Construction Algorithm (also known as Buchi’s¨  

Algorithm) [33], respectively.  

  

 5.1  Depth-first Search  

  

Using DFS to traverse the graph requires only one running 

DFA and, correspondingly, one pair of vari-ables keeping 

the current status and the history of exploration in a DFS 

traversal. Whereas, a BFS traver-sal has to maintain 

multiple DFAs and multiple vari-ables simultaneously and 

switch between these DFAs back and forth constantly, 

which makes the costs of memory space and I/O 

operations proportional to the number of nodes visited 

during exploration. Note that DFS could take a long 

traversal to find a target node, even if the node is close to 

the starting node. If the hopcount is unlimited, a DFS 

traversal may pursue a lengthy useless exploration. 

However, as activities in OSNs typically occur among 

people with close relationships, DFS with limited 

hopcount can minimize  

  such unnecessary traversals.  

In Algorithm 2, the variable currentP ath, initialized as 

N IL, holds the sequence of the traversed edges between the 

starting node and the current node. Variable stateHistory, 

initialized as the initial DFA state, keeps the history of DFA 

states during algorithm execution. The main procedure starts 

by setting the current traversal depth d to 0 and launches the 

DFS traversal function DF ST () in  Algorithm 3 from the 

starting node s.  

In Algorithm 3, given a node u, if d + 1 does not exceed 

the hopcount limit, it indicates that traversing one step 

further from u is allowed. Otherwise, the algorithm returns 

false (line 2) and goes back to the previous node (line 24). 

If further traversal is allowed, then the algorithm picks up 

an edge (u; v; ) from the list of the incident edges leaving 

u. If (u; v; ) is unvisited, we get the node v on the opposite 

side of the edge (u; v; ). Now we have six different cases. 

If v is on currentP ath, we will never visit v again, because 

doing so creates a cycle on the path. Rather, the algorithm 

breaks out of the current for loop, and finds the next  

  unchecked edges of u.  

When v is not on currentP ath, we check if the transition 

belongs to the set of valid transitions for DFA. If the 

transition is invalid for DFA, we try the next edge (case 2). 

If the transition is valid and v is the target node t, there are 

two cases depending on whether taking transition reaches 

an accepting state. If it reaches an accepting state, we find 

a path between s and t matching the pattern P ath (case 3). 

We increment d by one, concatenate edge (u; v; )  

  

to currentP ath, and save the current DFA state to history. If it 

does not, we break out of the for loop and continue to check 

the next unchecked edge of u (case 4). If the transition is valid 

but v is not the target node t, the algorithm increments d by 

one, concatenates e to currentP ath, moves DFA to the next 

state via transition type , updates the DFA state history, and 

repeatedly executes DF ST () from node v (case 5). If the 

recursive function call discovers a matching path, the 

previous call also returns true. Otherwise, the algorithm has 

to step back to the previous node of u, reset all variables to 

the previous values, and check the next edge of node u. 

However, if d = 0, all the outgoing edges of the starting node 

are checked, thus the whole execution completes without a 

matching path.    

   

  

Algorithm 2   DF SP athChecker(G; path; hopcount; s; t)  

  1: DF A REtoDF A(path); currentP ath  NIL; d  0  
2: stateHistory   DFA starts at the initial state  

 3: if hopcount 6= 0 then  
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 4:  return DFST(s)  

  
Algorithm 3   DF ST (u)  

 1: if d + 1 > hopcount then  
2:  return FALSE  

3: else  
4:  for all (v;  ) where (u; v;  ) in G do  

5:  switch  
 6:  case 1 v 2 currentP ath  

7:  break  
8:  case 2 v 2= currentP ath and transition is invalid for 

DFA  
9:  break  

10:  case 3 v 2= currentP ath and v = t and DFA with  

11:  

transition   is at accepting state   d  d + 1; 

currentP ath  currentP ath:(u; v;  )    
12:  currentState   DFA takes transition  
13:  stateHistory   stateHistory:(currentState)  
14:  return TRUE  
15:  case 4 v 2= currentP ath and v = t and transition is valid 

for DFA but DFA with transition is not at accepting state  

16:  break  
17:  case 5 v 2= currentP ath and v 6= t and transition is valid 

for DFA  
 18:   d  d + 1; currentP ath  currentP ath:(u; v;  )  
19:  currentState   DFA takes transition  
20:  stateHistory   stateHistory:(currentState)  
21:  if (DFST(v)) then  
22:  return TRUE  
23:  else  
24:   d  d  1; currentP ath  currentP athn(u; v;  )  
25:  previousState   last element in stateHistory  
26:  

  

DFA backs off the last taken transition to 

previousState  

 27:  stateHistory   stateHistoryn(previousState)  
 28:  return FALSE  

  

  5.2  Breadth-first Search  

Starting from an initial node, a BFS traversal aims to 

expand and examine all nodes of a graph from inside out 

until it finds the goal. A FIFO (first in, first out) queue is 

created with the starting node as the first element. All the 

nodes of a level need to be added to the queue, and will be 

dequeued before the nodes of their child level. Similar to 

the DFS traversal, we need to create a running DFA and 

set up the corre-sponding variables for the search. 

However, to find a matching path, a BFS traversal has to 

maintain the DFA state and other variables for every 

possible path it examines, resulting in a multiple number 

of DFAs and variables simultaneously. Although BFS may 

nat-urally consume more computational resources, it has 

advantage over its DFS counterpart as it never wastes time 

on a  

  lengthy unsuccessful exploration.  

As shown in Algorithm 4, we create a DFA from the 

regular expression pattern, enqueue the start-ing node s, and 

initialize the variable currentP ath, stateHistory and d of s to 

N IL, the initial DFA state and 0, respectively. The algorithm 

continues when the queue is not empty, and dequeues the first 

node of the queue for further exploration. Given a node q, if 

d+1 does not exceed the hopcount limit, the algorithm moves 

on to examine the incident outgoing edges of q. All edges can 

be classified into the same five cases as in the 

abovementioned DFS algorithm. For an edge (u; v; ), only 

when v is not on currentP ath and v is the target node t and  

 DFA taking a valid transition reaches an accepting state, we 

find a path between q and t matching the pattern P ath (case 

3). We then update the corresponding variables for node v 

and exit the algorithm with true. If v is not on currentP ath 

and is not the target node, we check the validity of the 

transition . If the transition is valid, we will take it, update 

the variables of v, and enqueue node v into the queue for 

later examination (case 5). In all other cases, a successful 

exploration will not possibly occur, thus the edges are 

dropped. After checking all edges within the hopcount 

limit, the algorithm terminates with false if no matching 

path is found.  

  

  5.3  Iterative Deepening Search  

With hopcount, the DFS algorithm becomes a depth 

limited search. Hence, it avoids drawbacks in classi-cal 

DFS regarding completeness. Iterative deepening search 

(IDS) algorithm executes depth limited search multiple 

times thus yields a worse result than our hopcount-enabled 

DFS algorithm. For this reason, we do not consider IDS 

further in this paper.  

  

  5.4  Proof of Correctness  

The two algorithms are based on the classical DFS and 

BFS algorithms with a specific goal of finding qualified 

paths between nodes within a given hop-count limit. To 

establish the correctness, we need to  

  

  

 
Algorithm 4   BF SP athChecker(G; path; hopcount; s; t)  

1: DF A   REtoDF A(path)  

 2: if hopcount 6= 0 then  
3:  create queue Q  
 4:  

  

create node s: s:DF A  DF A; s:currentP ath  
NIL; s:d 0; s:stateHistory DFA starts at the initial state  

5:  enqueue s onto Q  

6:  while Q is not empty do  
7:  dequeue a node from Q into q  
8:  if q:d + 1 > hopcount then  
9:  break  

10:  else  
11:  for all (v;  ) where (q; v;  ) in G do  
12:  switch  
 13:  case 1 v 2 currentP ath  
14:  break  
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15:  case 2 v 2= currentP ath and transition is invalid 

for DFA  
16:  break  
17:  case 3 v 2= currentP ath and v = t and DFA with 

transition is at accepting state  
18:  create node v (clone from q)  
19:  v:previousState   v:currentState  
20:  v:currentState   DFA takes transition  
21:  v:d + +  
22:  v:currentP ath adds (q; v;  )  
23:  v:stateHistory adds currentState  
24:  return TRUE  
25:  case 4 v 2= currentP ath and v = t and transition is 

valid for DFA but DFA with transition is not at 

accepting state  
26:  break  
27:  case 5 v 2= currentP ath and v 6= t and transition 

is valid for DFA  
28:  create node v (clone from q)  
29:  enqueue v onto Q  
30:  v:previousState   v:currentState  
31:  v:currentState   DFA takes transition  
32:  v:d + +  
33:  v:currentP ath adds (q; v;  )  
34:  v:stateHistory adds currentState  
 35:  return FALSE  

  

  

prove from two aspects: (1) the algorithms will halt with true or 

false, and (2) if the algorithms return true, currentP ath gives a 

simple path of length less than or equal to Hopcount and the 

string described by currentP ath belongs to the language 

described by L(P ath); if the algorithms return false, there is no 

simple path p of length less than or equal to Hopcount such that 

the string representing p belongs to L(P ath).    

All edges are classified into five categories using four rules: 

(1) is the current node on current traversed path, (2) is the 

transition valid, (3) is the edge’s des-tination the target node, 

and (4) does taking transition    

reach an accepting state. Only edges that fall into case 3 

indicate that a qualified path is found, and only edges that 

belong to case 5 require the algorithm to take one step further. 

The for loop guarantees edge will be visited once and only 

once, if a qualified path has been found yet. Rule  

(1)  avoids cycles in  

traversal, and hopcount limit provides a cutoff to halt the 

algorithm. Other than that, the two algorithms are identical 

with the classical algorithms. Thus, we can use induction 

to prove the above properties easily.  

  

  5.5  Complexity Analysis  

In the algorithms, every possible path from s to t will be 

visited at most once until it fails to reach t, while every 

outgoing edge of a node may be checked multiple times 

during the search. In the extreme case, where every 

relationship type is acceptable and the graph is a complete 

directed graph, the overall com-plexity would be O(jV 

j
Hopcount

). However, users in OSNs usually connect with 

a small group of users directly, thus the social graph is 

actually very sparse. We define the maximum and 

minimum out-degree of node on the graph as dmax and 

dmin, respec-tively. Then, the time complexity can be  

  bounded be-  

tween O(dmin
Hopcount

) and O(dmax
Hopcount

). Given the 

constraints on the relationship types and hopcount limit in 

the policies, the size of graph to be explored can be 

dramatically reduced. The BFS algorithm and the 

recursive DFST() call terminate as soon as either a 

matching path is found or the hopcount limit is reached.  

  

  6  IMPLEMENTATION AND EVALUATION  
In this section, we present some of the results ob-tained from 

our performance studies on the two path-checking algorithms. 

We implemented the algorithms in Java, and designed two 

sets of experiments to test the runtime execution of an access 

request evaluation using both algorithms. We deployed an 

access control decider with BFS and DFS path checkers on a 

virtual machine instance of an Ubuntu 12.04 image with 4GB 

memory and a 2.53 GHz quad-core CPU. The social graphs 

to be tested are stored in MySQL databases on the testing 

machine along with the sample access control policies. We 

designed sample policies and access requests that would 

require the access control decider to gather necessary 

information and crawl on the graph for access decisions. We 

then measured the time the algorithms take to complete a path 

checking over the graph and return a result to the decider.  

  

  6.1  Datasets  

When designing the experiments, we consider two parameters 

of the graphs: hopcount (depth) and degree (width). Although 

the total number of nodes in the system may influence the 

performance and scalability of many graph systems, in our 

system the algorithms are not to explore the whole graph but 

the paths with limited hops stemming from one node. 

Therefore, the total number of nodes is not significant with 

respect to the performance. In fact, it is the hopcount limit and 

the number of edges to be explored at each hop  

  

that contribute most to the size of the problem, and hence the 

performance of our system.    

A significant issue in this evaluation consists in the selection 

of representative datasets. There are some public available 

datasets collected from real-world OSN systems with large 

amount of real data. How-ever, most of them only consider single 

relationship type or do not support relationship type at all. In a 

related analysis [7], the authors modified the original datasets to 

add type information, where relationship types are uniformly 

distributed. However, manually adding type information to the 

real datasets may not reflect the actual user behaviors, and thus 

ruins the integrity of the datasets and diminishes the value of 
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having real data. Moreover, different real datasets pos-sess 

various properties, making them incomparable with each other. 

Hence, synthetic data becomes an alternative for us, where we 

can configure different social graphs under our control, and 

analyze some specific properties of these graphs. To generate 

syn-thetic social graphs, we use neither the G(n, p) nor the 

G(n,m) variation of the ErdosRenyi model, because both of them 

create graphs in which each node may have different number of 

edges. Instead, since our experiment is focused on the 

comparison on density, we set the outgoing degree of each node 

to a fixed number in each graph. The selection of the destination 

of each edge is random.  

  

In the first set of experiments, we examine the performance 

of the BFS and DFS algorithms with respect to policies with 

different hopcount limit. In particular, we set the parameters 

to 1000 users and single relationship type for this set of 

experiments. Each user has the same number of neighbors, 

who are randomly selected among the rest 999 users. Two dif-

ferent kinds of path patterns, including enumeration and *-

pattern, are used in the policies to investigate the impact of 

hopcount limit on the performance of the algorithms.    

In the second set of experiments, we aim to study the 

performance of the algorithms against various number of 

edges that need to be traversed (i.e., the average degree of 

nodes in the graph) to show the scalability of our approach 

against dense graph. We keep the same 1000 users as in the 

previous experi-ments, but enable two types of relationships, 

namely “f(riend)” and “c(oworker)”, and randomly assign 

each relationship between users with one of these types. The 

number of neighbors for each user is set in the quantities of 

100, 200, 500 and 1000. Consider the fact that there are only 

two types of relationship and the social graph in reality is 

usually a sparse graph, 1000 neighbors for each of 1000 users 

makes a relatively “dense” social graph for evaluation. We 

then run different policies on these four graphs to compare 

their differences.    

Given an access control policy, we randomly pick 1000 

different pairs of requester and target nodes from    

the graph, and run each algorithm 5 times on these 1000 pairs 

of nodes. Each measurement is the average results of these 

5000 runs. To make fair comparison between true and false 

cases, we design different policies to get 5000 true cases and 

5000 false cases. To evenly compare between true cases of 

different settings, we scale the number of selected users so 

that we can get results from the same amount of true cases.  

  

  6.2  Results  

Figure 4 illustrates the results of the first set of ex-periments. 

We compare the BFS and DFS algorithms using policies with 

different hopcount limits in both the true-case and false-case 

scenarios. For true cases of *-pattern paths, Figure 4 (a) shows 

how the average running time changes with respect to 

increase in hopcount limit. To make a more comprehensive 

comparison, in this particular test, we apply the following 

values 10, 50 and 200 (which is close to 190, the average 

number of friends claimed by Facebook [37]) to the number 

of neighbors for each user. *-pattern paths are known to be 

more flexible than enumeration paths in path-checking. In 

fact, the results for *-pattern record the time elapse of finding 

one of the shortest qualified path. As we expected, when 

hopcount increments, the average execution time required for 

both algorithms increases as well, but the trends tend to flatten 

after the hopcount reaches 4. It indicates that a qualified path 

can be always found between two users within 4 hops in this 

setting. A probability calculation also verifies this finding. In 

the case of 10 neighbors per user, the aggregate probability of 

finding a qualified path is 1%, 10.5%, 67.3% for the first three 

hops, respectively, and eventually 100% at the fourth hop. 

The probability reaches 100% within 3 hops in the other two 

denser graphs. We also find that the BFS algorithm works 

slightly better than the DFS algorithm for large hopcount limit 

in sparse graphs, as DFS takes many lengthy probes before 

finding a qualified path while BFS does not suffer from much 

overhead in sparse graphs.  

  

According to the classic idea of “six degrees of sepa-

ration” and the findings of “small world experiment” [30], 

[36], any pair of people are distanced by no more than six 

intermediate connections on average. A recent study by 

Backstrom et al [1] further indicates that the average distance 

on the current social graph of Facebook is smaller than the 

commonly cited six degrees, and has shrunk to 4.74 as 

Facebook grows. Based on these findings, for true cases of 

enumeration paths, we restrain the hopcount limit up to 4, as 

our dataset is relatively much smaller than Facebook. As 

shown in Figure 4 (b), when hopcount limit incre-ments, the 

time cost by the BFS algorithm increases significantly, due to 

the fact that it will not take the next hop without finishing 

search on all edges at the current level; whereas a greater 

hopcount does not worsen the performance of the DFS 

algorithm much.  

  

Figure 4 (c) demonstrates the comparison between the two 

algorithms in false-case scenarios. The false-case scenarios 

actually represent the worst case sce-nario for path-checking, 

where both algorithms need to exhaustively search all 

possible paths within the hopcount limit from the starting 

node. Therefore, the two algorithms perform similarly in both 

enumeration and *-pattern settings. As hopcount increases, 

the time costs of the algorithms increase approximately in the 

magnitude of node degree, which match our expectation given 

in the complexity analysis.    

Figure 5 represents a comparison of the perfor-mance of the 

two algorithms on graphs with different node degrees. In truecase 

scenarios, as shown in Figure 5 (a, b and c), we notice that 

incrementing hop-count limit increases the time for both 

algorithms to find a qualified path, since the search space 

expands accordingly. We also observe that when dealing with 2-

hop policies, the time cost declines gradually with an increase in 

node degree. This is mainly because it is more possible to find a 

qualified path between two nodes at an earlier time in denser 
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graphs than sparser graphs, although the worst possible time for 

denser graphs is way larger. For 3-hop policies, however, BFS 

algorithm has to explore all possible paths at the first 2 hops until 

attempting the 3rd hop, thus spending much more time to find a 

match when node degree increases. DFS algorithm, on the other 

hand, does not suffer from the greater search space brought by 

the increase of node degree. In general, both algo-rithms perform 

similarly on 1 and 2-hop policies, but DFS algorithm outperforms 

its BFS counterpart when dealing with 3-hop policies and larger. 

Similar to the first set of experiments, we obtain similar results 

for both algorithms in false-case scenarios (5 (d)), as both of them 

experienced an exhaustive search. Consistent with our previous 

analysis on complexity, the results we observed from the four 

different social graphs reveal an increase of time proportional to 

the node degrees as expected.  

  

Our results indicate that both node degree and hopcount limit 

significantly affect the performance of the two algorithms. In 

some extreme cases (e.g., long enumeration paths, high density 

graph, etc.), searching a qualified path of 3 hops long may take 

very long time that the system and users cannot tol-erate. 

However, social graphs in reality are often big and sparse, not 

many people will have thousands of contacts in the social 

network. Moreover, people tend to interact with other users 

within a close distance, so a large hopcount is rather uncommon 

in practice. If users specify policies with loose constraints (e.g., 

*-patterns) and small hopcount limit, the algorithms are able to 

return a result in a reasonably short time. We also suggest the 

system adds a time out for any access query in order to avoid 

waiting for those extreme scenarios. Another possible way of 

mitigating lengthy hops is to allow users to have a customized 

view    

  

of social graph and create shortcuts for frequently used 

relationship patterns. Caching might also be an alternative for 

improving performance [16]. Another important observation 

from our experiments is that although they have almost the 

same performance for 1 and 2-hop policies, DFS algorithm in 

general is likely to be more suitable for policies with 

intermediate hop-count values (e.g., 3, 4, 5, etc) than its BFS 

counterpart.  

  

 7  CONCLUSION  

  

In this paper, we proposed a UURAC model and a regular 

expression based policy specification lan-guage. We 

provided DFS-based and BFS-based path checking 

algorithms and analyzed the complexity for the 

algorithms. We demonstrated the feasibility of our 

approach by discussing a proof-of-concept implemen-

tation of both algorithms, followed by the evaluation 

results.  

      

      

       

  

  

    

   3   3  

      Hopcount         Hopcount     Hopcount    
  

 (a) True-case scenarios: *-patterns  (b) True-case scenarios: enum-patterns  (c) False-case scenarios  

  

 Fig. 4: Experiment 1: BFS vs DFS on hopcount    
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We believe the proposed model in this paper pro-vides 

a solid foundation for more advanced ReBAC solutions in 

the future. We have extended this work to a new model, 

namely URRAC, which exploits user-to-resource and 

resource-to-resource relationships as well [13]. We have 

also proposed an attribute-aware UURAC model that 

incorporates attribute-based poli-cies to ReBAC [15].  
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