

 1

An Access Control Model for Multiuser Relationships In Online Social

Networks

Abstract - Users and resources in online social networks (OSNs) are interconnected via various types of

relationships. In particular, user-to-user relationships form the basis of the OSN structure, and play a significant

role in specifying and enforcing access control. Individual users and the OSN provider should be enabled to

specify which access can be granted in terms of existing relationships. In this paper, we propose a novel user-to-

user relationship-based access control (UURAC) model for OSN systems that utilizes regular expression

notation for such policy specification. Access control policies on users and resources are composed in terms of

requested action, multiple relationship types, the starting point of the evaluation, and the number of hops on the

path. We present two path checking algorithms to determine whether the required relationship path between

users for a given access request exists. We validate the feasibility of our approach by implementing a prototype

system and evaluating the performance of these two algorithms.

 Index Terms—Social network, access control, security model, policy specification

 1 INTRODUCTION

Online social networks (OSNs) have become ubiqui-tous

in daily life and have tremendously changed how people

connect, interact and share information with each other.

Users share an enormous amount of content with other

users in OSNs for a variety of purposes. The sharing and

communications are based on social connections among

users, namely relation-ships. Since most users join OSNs

to keep in touch with people they already know, they often

share a large amount of sensitive or private information

about themselves. Given the rising popularity of OSNs and

the explosive growth of information shared on them, OSN

users are exposed to potential threats to secu-rity and

privacy of their data. Security and privacy incidents in

OSNs have increasingly gained attention from both media

and research community [3], [21]. These incidents

highlight the need for effective access control that can

 protect data from unauthorized access in OSNs.

Access control in OSNs presents several unique

characteristics different from traditional access con-trol. In

mandatory and role-based access control, a system-wide

access control policy is typically spec-ified by the security

administrator. In discretionary access control, the resource

owner defines access con-trol policy. However, in OSN

systems, users expect to regulate access to their resources and

 activities related

to themselves. Thus access in OSNs is subject to userspecified

policies. Other than the resource owner, some related users

(e.g., user tagged in a photo owned by another user, parent of a

user) may also expect some control on how the resource or user

can be exposed. To prevent users from accessing unwanted or

inappropriate content, user-specified policies that regulate how

a user accesses information need to be considered in

authorization as well. Thus, the system needs to collect these

individualized partial policies, from both the accessing users

and the target users, along with the systemspecified policies and

fuse them for the collective control decision.
In OSN, access to resources is typically controlled based

on the relationships between the accessing user and the

controlling user of the target found on the social graph. This

type of relationship-based access control (to which we refer

as ReBAC) [22] takes into account the existence of a

particular relationship or a particular sequence of

relationships between users and expresses access control

policies in terms of such user -to-user (U2U) relationships.

Most existing OSN systems enforce a rudimentary and

limited relationship-based access control mecha-nism, offering

users the ability to choose from a pre-defined policy

vocabulary, such as “public”, “private”, “friend” or “friend of

friend”. Google+ and Facebook introduced customized

relationships, namely “circle” and “friend list”, providing users

richer options to differentiate distinctly privileged user groups.

Mean-while, researchers have proposed more advanced

relationship-based access control models in online .

 Although only having the “friend” relationship type, [19]

provides additional topology-based policies, such as known

quantity, common friends and stranger of more than k

distance. While these works have their own advantages, one

of the common drawbacks they share is that they do not allow

different relationship types

and multiple possible types on

 each hop.

2

In this paper, we propose a novel user-to-user

relationshipbased access control (UURAC) model, al-lowing

users the ability to express more sophisticated and fine-

grained access control policies in terms of type pattern and

depth of relationships among users in the network. Type

pattern captures the pattern of relationship types along the

relationship path from the accessing user to the target user.

We adopt a regular expression-based approach for policy

specification. Sequence of characters and quantification

notations are employed to denote relationship paths, which

express indirect relationships among users, such as f , f+, cf?,

etc. The use of regular expression and multiple relationship

types gives the policy language the ability to specify more

succinct policies than pre-vious models did. To the best of our

knowledge, this is the first relationship-based access control

 model for OSNs with such capability.

The rest of this paper is organized as follows. Section 2

provides motivation and context for our work, discusses

related work, and identifies our con-tributions. In section

3, we present the fundamental structure of our UURAC

model. A policy language for expressing access control

policies is articulated in section 4. In section 5, we

introduce path checking algorithms to evaluate a given

access control policy. Section 6 describes prototype

implementation and experimental results. Section 7

concludes the paper and outlines some future work.

 2 MOTIVATION

This section discusses characteristics of access control in

OSNs, related work, our approach, and outlines our

contributions.

 2.1 Characteristics of Access Control for OSNs OSN is

becoming the most prevalent manifestation of usergenerated

content platforms. Photos, videos, blogs, web links and other

kinds of information are posted, shared and commented by

OSN users. Various types of user interactions, including

chatting, private messaging, poking, social games, etc., are

also embed-ded into these systems. Below, we discuss some

essen-tial characteristics [31], [32] that need to be

 supported in access control solutions for OSN systems.

Policy Individualization. OSN users may want to

express their own preferences on how their own or related

contents should be exposed. A system-wide access control

policy such as we find in mandatory and role-based access

control, does not meet this

need. Access control in OSNs further differs from discretionary

access control in that users other than the resource owner are also

allowed to configure the policies of the related resource. In

addition, users who are related to the accessing user, e.g. parent

to child, may want to control the accessing user’s actions.

Therefore, the OSN system needs to collectively utilize these

individualized policies from users related to the accessing user or

the target, along with the system -specified policies for control

decisions.

User and Resource as a Target. Unlike traditional user

access where the access is against target resource, activities

such as poking and friend recommendations are performed

against other users.

User Policies for Outgoing and Incoming Actions.

Notification of a particular friend’s activities could be

bothersome and a user may want to block it. This type of

policy is captured as incoming action policy. Also, a user may

want to control her own or other users’ activities. For

example, a user may restrict her own access from all violent

content or a parent may not want her child to invite her co-

worker as a friend. This type of policy is captured as an

outgoing action policy. In OSN, it is necessary to support

policies for both types of actions.

Necessity for Relationship-based Access Control.

Typically, the number of users in an OSN is very large and

the amount of resources they own is usually even larger.

Moreover, the relationships among users are changing

frequently and dynamically. A user may not be able to know

either the user name space of the entire network or all her

possible direct or indirect contacts. Therefore, it is infeasible

for her to specify access control policies for all of the possible

accessing users. Even if she knows them all, it takes enormous

amount of time for her to explicitly specify policies for all of

them one by one as in discretionary access control. Role-

based access control does not fit well in this situation either,

because privileged user groups are different for each user.

Thus different users’ priv-ileged user groups cannot be

assigned to a unified set of roles. Overall using traditional

access control approaches is cumbersome and inadequate for

OSN systems.

Instead, access control in OSNs is mainly based on

relationships among users and resources. For exam-ple, only

Alice’s direct friends can access her blogs, or only user who

owns the photo or tagged users can modify the caption of the

photo. Depth is another significant parameter, since people

tend to share re-sources with closer users (e.g., “friend”, or

“friend of friend”).

2.2 Prior Access Control Models for OSNs

The large and complex collections of user data in OSNs

require usable and fine-grained access con-trol solutions to

protect them [22], [23]. Gates [22]

discusses the access control requirements for OSN

environments, where she argues that one of the key

 requirements is relationship-based access control.

A formal model for access control in Facebook-like

systems was developed by Fong et al [19], which treats

access control as a two-stage process, namely, reaching the

search listing of the resource owner and accessing the

3

resource, respectively. Reachabil-ity of the search listings

is a necessary condition for access. Although lacking

support for directed relationships, multiple relationship

types and trust metric of relationships, this model allows

expression of arbitrary topology-based properties, such as

“k-common friends” and “k-clique”, which are beyond
what Facebook and other commercial OSNs offer.

In [18], Fong proposed a formal model for social

computing applications, in which authorization de-cisions

are based on user-to-user relationships. This model

employs a modal logic language for policy specification.

Fong et al extended the policy language and formally

characterized its expressive power [20]. In contrast to [19],

this model allows multiple relation-ship types and

directional relationships. Relationships and authorizations

are articulated in access contexts and context hierarchy to

support sharing of relation-ships among contexts. Bruns et

al [5] later improved [18], [20] by using hybrid logic to

enable better effi-ciency in policy evaluation and greater

flexibility of atomic formulas. [5], [20] also support

policies such as “k-common friends” and “k-clique” in

 addition to path policies.

Inspired by research in trust and reputation sys-tems, some

early solutions proposed by Kruk et al [28] and Carminati et

al [10], [11] identified aggregated trust value, denoting the

level of relationship, along with relationship type and depth

on a path from the resource owner to the accessing user as

parameters for authorization. While Kruk’s work only

considers one relationship type, Carminati’s work allows

multiple relationship types but only supports trust

computation of a relationship path of a single type at a time.

Carminati et al also proposed a semi-decentralized

architecture, where access rules are specified in terms of

relationship type, depth and trust metrics by indi-vidual users

in a discretionary way [12]. The system features a centralized

certificate authority to assert the validity of relationship paths,

while access control

 enforcement is running on the decentralized user side.

In [8], [9], an access control model for OSNs utilizes

semantic web technologies. Unlike other works, this model

exhibits different relationships between users and resources.

It defines three kinds of access poli-cies with the Web

Ontology Language (OWL) and the Semantic Web Rule

Language (SWRL), namely authorization, administration and

filtering policies. Similar to [8], [9], Masoumzadeh et al [29]

proposed ontology-based social network access control. Their

model captures delegation of authority and empowers

both users and the system to express finer-grained access

control policies.

It is worth noting that Crampton et al [17] recently

proposed a variant of ReBAC model for applications beyond

OSNs that specifies policies in terms of path conditions,

which are similar to regular expressions.

Several works resort to attribute information to address access

control for OSNs. Persona [2], EASiER

[27] and the DBRA framework [4] are three representatives

of attribute-based encryption (ABE) schemes for protecting

shared data in OSNs. Basically, users define relationships or

groups by assigning attributes to them, and resources are

encrypted with attribute-based policies. Keys are distributed

to groups or relationships so that only users with necessary at-

tributes will be able to decrypt the data. In addition to

attributes, [4] also allows constraints on distance be-tween

users on the social graph. These ABE schemes usually work

as a third-party application and require shared content to be

stored in an encrypted form, which consequently limits the

functionality of OSNs. Key distribution and revocation is also

an issue in practice, since relationships between users in

OSNs are changing dynamically.

2.3 Comparison of Access Control Models for OSNs The

first four columns of Table 1 summarize the salient

characteristics of the models discussed above. The fifth

column gives these characteristics for the new UURAC model

to be defined in this paper.

All the models deal only with U2U relationships, except [8],

[9] also recognize U2R (user-to-resource) relationships

explicitly. U2R relationships can be cap-tured implicitly via U2U

with the last hop being U2R. While we believe that explicit

treatment of U2R and R2R (resource-to-resource) relationships

is important, this is beyond the scope of this paper. Fong et al’s

[5], [19], [20] allow users to express policies such as “k-common

friends” and “k-clique”. While the proposed model in this paper

only permits specification of paths, the model can be extended to

capture this type of policies by utilizing attribute information of

users and relationships as shown in [15].

In terms of expressive power, the regular expression path

policy with hopcount proposed in this work is equal to the

above logic based approaches. However, it is relatively easier

and more efficient to use. A single regular expression path

pattern can express multiple paths without enumerating every

possible path. For instance, (f ; 3) can cover three enumeration

paths f; ff; and f ff. Details about the policy specifications are

provided later in the paper.

 3 UURAC MODEL FOUNDATION

In this section, we develop the foundation of UURAC

including basic notations, access control model components

and social graph model.

4

 3.1 Basic Notations

We write to denote the set of relationship type specifiers,

where = f 1, 2,: : :, n, 1
1
, 2

1
,: : :, n

1
g. Each relationship

 type specifier is represented by

a character recognizable by the regular expression parser.

Given a relationship type i 2 , the inverse of the

relationship is i
1
 2 .

We differentiate the active and passive forms of an

action, denoted action and action
1
, respectively. If Alice

pokes Bob, the action is poke from Alice’s viewpoint,

whereas it is poke
1
 from Bob’s viewpoint.

 3.2 Access Control Model Components

Fig. 1: Model Components

The model comprises five categories of components as
shown in Figure 1.

Accessing User (ua) represents a human being who

performs activities. An accessing user carries access

 control policies and U2U relationships with other users.

Each Action is an abstract function initiated by

accessing user against target. Given an action, we say it is

action for the accessing user, but action
1
 for the recipient

user or resource.

Target is the recipient of an action. It can be either target user

(ut) or target resource (rt). Target user has her own policies and

U2U relationship information, both of which are used for

authorization decisions. Target resource has U2R relationship

(i.e., ownership) with controlling users (uc). An accessing user

must have the required U2U relationships with the control -ling

user in order to access the target resource.

Access Request denotes an accessing user’s request of a

certain type of action against a target. It is modeled as a tuple

< ua, action, target >, where ua 2 U is the accessing user,

target is the user or resource that ua tries to access, whereas

action 2 Act specifies from a finite set of supported functions

in the system the type of access the user wants to have with

target. If ua requests to interact with another user, target = ut,

where ut 2 U is the target user. If ua tries to access a resource

owned by another user uc, target is resource rt 2 R where R is

a finite set of resources in OSN.

TABLE 1: Comparison of Access Control Models for OSNs

 Fong [19] Fong [5], [18], [20] Carminati Carminati [8], UURAC

 [12] [9]

Relationship Category
Multiple Relationship Types

X

X X X
Directional Relationship U2U

Relationship X
X
X

 X
X X

X
X

U2R Relationship X

Model Characteristics
Policy Individualization

X

X

X X X
User & Resource as a Target (partial) X

Outgoing/Incoming Action Policy (partial) X

Relationship Composition Relationship

Depth

0 to n

0 to n

1 to n

1 to n

0 to n
Relationship Composition f, f of f; exact type path of same exact type se- exact type sequence,

 common sequence; type Quence path pattern of dif-

 friends, common friends, ferent types

 clique

clique (except
[18])

5

Fig. 2: Access Control Policy Taxonomy

Policy defines the rules according to which autho-rization is

regulated. As shown in Figure 2, policies can be categorized into

user-specified and system-specified policies, with respect to who

defines the policies. System-specified policies (SP) are system-

wide general rules enforced by the OSN system; while user-

specified policies are applied to specific users and resources.

Both user - and system-specified

policies include policies for resources and policies for users.

Policies for resources are used to spec-ify who can access the

resources, while policies for users regulate how users can

behave regarding an action. User-specified policies for a

resource are called target resource policies (T RP), which are

policies for incoming actions. User-specified policies for

users can be further divided into accessing user policies (AU

P) and target user policies (T U P), which correspond to

user’s outgoing and incoming access (see examples in Section

2.1), respectively. Accessing user policies, also called

outgoing action policies, are associated with the accessing

user and regulate this user’s outbound ac-cess. T arget user

policies, also called incoming action policies, control how

other users can access the target user. Note that system-

specified policies do not have separate policies for incoming

and outgoing actions, since the accessor and target are

explicitly identified.

 3.3 Modeling Social Graph

As shown in Figure 3, an OSN forms a directed labeled

simple graph
1
 with nodes (or vertices) rep-resenting users

and edges representing user-to-user relationships. We

assume every user owns a finite set of resources and

specifies access control policies for the resources and

activities related to her. If an accessing user has the U2U

relationship required in the policy, the accessing user will

be granted per-mission to perform the requested action

 against the corresponding resource or user. We

model the social graph of an OSN as a triple G =<

U; E; >:

U is a finite set of registered users in the system,

represented as nodes (or vertices) on the graph. We

use the terms user and node interchangeably from

now on.

= f 1; 2; ::; n 1
1
; 2

1
; ::; n

1
g denotes a fi-nite set of

relationship types, where each type specifier denotes

a

 relationship type supported in the system.

E U U , denoting social graph edges, is a set of

 existing user relationships.

Since not all the U2U relationships in OSNs are mutual,

we define the relationships E in the system as directed. For

every i 2 , there is i
1
 2 representing the inverse of

relationship type i. We do not explicitly show the inverse

relationships on the social graph, but assume the original

relationship and its inverse twin always exist

simultaneously. Given a user u 2 U, a user v 2 U and a

 relationship type

2 , a relationship (u; v;) expresses that there exists a

relationship of type starting from user u and terminating at

v. It always has an equivalent form

1. A simple graph has no loops (i.e., edges which start and end on the

same vertex) and no more than one edge of a given type between any two

different vertices.

Fig. 3: A Sample Social Graph

(v; u;
1
). G =< U; E; > is required to be a simple graph.

 4 UURAC POLICY SPECIFICATIONS

This section defines a regular-expression based policy

specification language, to represent various patterns of

multiple relationship types.

4.1 Path Expression Based Policy

The user relationship path in access control policies is

represented by regular expressions. The formulas are based

on the set of relationship type specifiers. Each specification

in this language describes a pattern of required relationship

6

types between the accessing user and the target/controlling

user. We use three kinds of quantification notations that

represent different occurrences of relationship types: asterisk

(*) for 0 or more, plus (+) for 1 or more and question mark (?)

for 0 or 1. The asterisk is commonly known as the Kleene star.

4.2 Graph Rule Specification and Grammar An access

control policy consists of a requested action, optional target

resource and a required graph rule. In particular, graph rule is

defined as (start, path rule), where start denotes the starting

node of rela-tionship path evaluation, whereas path rule

denotes a collection of path specs. Each path spec consists of

a pair (path, hopcount), where path is a sequence of

characters, denoting the pattern of relationship path between

two users that must be satisfied, while hopcount limits the

maximum number of edges on the path.

Typically, a user can specify one piece of policy for each

action regarding a user or a resource in the system. Policies

defined by different users for the same action against same

target are considered as separate policies. The path rule in

each policy is composed of one or more path specs, in which

multiple path specs are connected by disjunction or

conjunction. For instance, a path rule (f , 3) _ (, 5) _ (f c,

2), where f is friend and c is co-worker, contains disjunction of

three different pieces of path specs, of

which one must be satisfied in order to grant access. Note

that, there might be a case where only users who do not

have particular types of relationships with the target are

allowed to access. To allow such negative

relationshipbased access control, a boolean negation

operator over path specs is allowed, which implies the

non-existence of the specified pair of relationship type

pattern path and hopcount limit hopcount following :. For

example, : (f c+,

5) means the involved users should not have relationship

of pattern f c+ within depth of 5 in order to get access.

Each graph rule usually specifies a starting node, the

required types of relationships between the start-ing node

and the evaluating node, and the hopcount limit of such

relationship path. A grammar describ-ing the syntax of this

policy language is defined in Table 2. Here, GraphRule

stands for the graph rule to be evaluated. StartingN ode can

be either the accessing user ua, the target user ut or the

controlling user uc, denoting the given node from which

the required relationship path begins. P ath represents a

sequence of type specifiers from the starting node to the

evaluating node. P ath will typically be non-empty. If path

is empty and hopcount = 0 we assign the special meaning

of “only me”, which is the only allowed case for empty

path. Quantif ier captures the three quantification

characters, which facilitate speci-fying path expressions

more efficiently and effectively. Given a graph rule from

the access control policy, this grammar specifies how to

parse the expression and to extract the containing path

pattern and hopcount from the expression.

4.3 User- and System-specified Policy Specifica-tions

User-specified policies specify how individual users want

their resources or services related to them to be released to

other users in the system. These policies are specific to

actions against a particular resource or user.

Systemspecified policies allow the system to specify

access control on users and resources. Dif-ferent from user

policies, the statements in system policies are not specific

to particular accessing user or target, but rather focus on

 the entire set of users or resource types (see Table 3).

In accessing user policy, action denotes the requested

action, whereas (start, path rule) expresses the graph rule.

Similarly, action
1
 in target user policy and target resource

policy is the passive form of the corresponding action applied

to target user. Target resource policy contains an extra

parameter uc, representing the con-trolling user of the

 resource.

This paper considers only U2U relationships in policy

specification. In general, there could be one or more

controlling users who have certain types of U2R

relationships with the resource and specify policies for the

corresponding target resource. To access the

resource, the accessing user must have the required

relationships with the controlling users. The policies

associated with the target resources are defined on the basis

of per action per controlling user. For in-stance, when

querying read access request on rt, all of rt’s target resource

policies need to be considered in evaluation. Each policy

specifies a controlling user, with whom the accessing user

must have the required relationship. Note that in this paper we

are not intro-ducing the policy administration model, so wh o

can specify the policy is not discussed.

System-specified policies do not differentiate the active

and passive forms of an action. System policy for users has

the same format as accessing user policy. However, when

specifying system policy for resources, one system-wide

policy for one type of access to all resources may not be fine-

grained and flexible enough. Sometimes we need to refine the

scope of the resources that applied to the policies in terms of

resource types (r:typename; r:typevalue).
2
 Examples of types

are (f iletype; photo), (f iletype; statusupdate), (location; T

exas), etc. Thus, <read, (f iletype, photo), (uc, f , 4)> is a

system policy applied to all read access to photos in the

system. When dealing with system policy for resources, we

can determine the controlling user of the resource through

some U2R relationships, such as ownership (as shown in

Figure 1).

4.4 Access Evaluation Procedure

Algorithm 1 AccessEvaluation(ua; action; target)

7

 1: (Policy Collecting Phase)

 2:3: if targetAUP u =a ’s policy for action, T UP uut then

t’s

policy for action 1,

SP system’s policy for action

 4: else

5: AUP ua’s policy for action, T RP rt’s policy for action
1
, SP

system’s policy for action; (r:typename; r:typevalue)
6: (Policy Evaluation Phase)
7: for all policy in AUP , T UP /T RP and SP do
8: Extract graph rules (start, path rule) from policy

9: for all graph rule extracted do
10: Determine the starting node, specified by start, where

 the path evaluation starts
11: Determine the evaluating node which is the other user involved

in access
12: Extract path rules path rule from graph rule
13: Extract each path spec path, hopcount from path rule 14:

 Path-check each path spec using Algorithm 2
15: Evaluate the combined result based on conjunctive or

disjunctive connectives between path specs and negation

on individual path specs
16: Compose the final result from the result of each policy

2. There could be combinations of multiple resource types in one policy,

but for illustration, we only show one resource type per poli

 cy.

Algorithm 1 specifies how the access evaluation procedure

works. When an accessing user ua requests an action against

a target user ut, the system will look up ua’s action policy, ut’s

action
1
 policy and the system-specified policy corresponding

to action. When ua requests an action against a resource rt, the

system will retrieve all the corresponding policies of rt.

Although each user can only specify one policy per action per

target, there might be multiple users specifying policies for

the same pair of action and target. Multiple policies might be

collected in each of the three policy sets: AU P , T U P /T RP

 and SP .

Example Given the following policies and social graph

in Figure 3:

 Alice’s policy PAlice: < poke, (ua, (f , 3))>

< poke
1
, (ut, (f, 1))> < read, (ua, (, 5))>

Harry’s policy PHarry: < poke, (ua, (cf , 5) _ (f , 5))>

< poke
1
, (ut, (f , 2))>

Policy of file2 Pfile2: < read
1
, Harry, (uc, :(p+, 2)>

 System’s policy PSys: < poke, (ua, (, 5))>

< read, (f iletype; photo), (ua, (, 5))>

When Alice requests to poke Harry, the system will look

up the following policies: < poke, (ua, (f , 3))> from PAlice, <

poke
1
, (ut, (f , 2))> from PHarry, and

< poke, (ua, (, 5))> from PSys. When Alice requests to

read photo f ile2 owned by Harry, the policies <read, (ua, (,

5))> from PAlice, < read 1, Harry, (u c, :(p+,

2)> from Pfile2, and < read, photo, (ua, (, 5))> from PSys

will be used for authorization.

For all the policies in the policy sets, the algo-rithm first

extracts the graph rule (start, path rule) from each policy.

Once the graph rule is extracted, the system can determine

where the path checking

TABLE 2: Grammar for graph rules

 GraphRule ::= \(" < StartingNode > \; " < P athRule > \)"

P athRule ::= < P athSpecExp > j < P athSpecExp >< Connective >< P athRule > Connective
::= _j^

 P athSpecExp ::= < P athSpec > j: < P athSpec >
P athSpec ::= \(" < P ath > \; " < HopCount > \)"j\(" < EmptySet > \; " < Hopcount > \)"

 HopCount ::= < Number >
P ath ::= < T ypeExp > j < T ypeExp >< P ath > j < T ypeExp > \j" < P ath >
EmptySet ::= ;
T ypeExp ::= < T ypeSpecifier > j < T ypeSpecifier >< Quantifier >
StartingNode ::= uajutjuc

 T ypeSpecifier ::= 1j 2j::j nj 1 1j 2 1j::j n 1j where = f 1; 2; ::; n; 1
1
; 2

1
; ::; n

1
g

 Quantifier ::= \ "j\?"j\ + "
 Number ::= [0 9]+

TABLE 3: Access Control Policy Representations

Accessing User Policy < action, (start, path rule)>
Target User Policy < action 1, (start, path rule)>
Target Resource Policy < action 1, uc, (start, path rule)>
System Policy for User < action, (start, path rule)>
System Policy for Resource < action, (r:typename; r:typevalue), (start, path rule)>

8

evaluation starts (using start), and then extracts every path

spec path, hopcount (from path rule). Then, it runs a

pathchecking algorithm (see the next section) for each path

spec. The path-checking algorithm re-turns a boolean result

for each path spec. To get the evaluation result of a particular

policy, we combine the results of all path specs in the policy

using con-junction, disjunction and negation. At last, the final

evaluation result for the access request is made by composing

all the evaluation results of the policies in the chosen policy

sets.

4.5 Discussion

4.5.1 Policy Conflict Resolution

In OSN systems, if multiple users are allowed to specify their

own policies on a same object or user, policy conflicts become

inevitable. There are substan-tial prior works on conflict

resolution of access control policies, especially in distributed

systems, database systems and collaborative environments.

Most con-flicts discussed in these works are conflicts between

positive and negative authorizations (permission vs.

prohibitions) typically arising due to generality or specificity

of the applicable policy in a hierarchy. However, in OSNs

possible policy conflicts arise as policies specified by distinct

users may carry contrast -ing authorizations.

With regards to multi-user policy conflicts in OSNs, there are

several interesting proposals as well. [34] leveraged a game

theoretic approach to address col-lective policy management in

OSNs. [24] formulated a multi-party access control model for

OSNs that mea-sures the tradeoff between privacy and sharing

with a policy conflict resolution mechanism based on vot-ing

scheme. [24] has been extended to express other threshold-based

and strategy-based conflict resolution in [26]. Similar idea can be

found in another piece of

their work [25], where conflict detection is also ad-dressed

in addition to conflict resolution. Carminati et al

introduced collaborative security policies to express

privacy concerns from multiple users, which explicitly

state either of the three strategies, namely “All, One, and

Majority”, to reach

 a collaborative decision [6].

In the proposed work, we consider three simple and

intuitive approaches to resolve conflicts: disjunctive,

conjunctive or prioritized. When a disjunctive ap-proach is

enabled, the satisfaction of any correspond-ing policy is

sufficient for granting the requested access. In a

conjunctive approach, the requirements of every involved

policy should be satisfied in order that the access request

would be granted. In a prior-itized approach, if, for

example, parents’ policies get priority over children’s

policies, the parents’ policies overrule children’s policies.

While policy conflicts are inevitable in the proposed

model, we do not discuss this issue in further detail here.

For simplicity we assume unambiguous system level

policies are avail-able to resolve conflicts in user-specified

authorization policies and do not consider user-specified

conflict resolution policies.

 4.5.2 Syntax

One observation from user-specified policies is that action

policy starts from ua whereas action
1
 policy starts from

ut. This is because action is done by ua while action
1
 is

from ut’s perspective. When hopcount = 0 and path equals

to empty, it has special meaning of “only me”. For

instance, < poke, (ua, (;, 0))> says that ua can only poke

herself, and < poke
1
, (ut, (;, 0))> specifies ut can only be

poked by herself. The above two policies give a

complementary expres-sive power that the regular policies

do not cover, since regular policies are simply based on

existing paths

 and limited hopcount.

As mentioned earlier, the social graph is modeled as a

simple graph. Further we only allow simple path with no

repeating nodes. Avoiding repeating nodes on the

relationship path prevents unnecessary iterations among

nodes that have been visited already and unnecessary hops

on these repeating segments. On the other hand, this

“norepeating” could be quite useful when a user wants to

expose her resource to farther users without granting

access to nearer users. For example, in a professional OSN

system such as LinkedIn, a user may want to promote her

resume to users outside her current company, but does not

want her co-workers to know about it. Note that the two

distinct paths denoted by f ff c and f c may co-exist

between a pair of users. Simply specifying f ff c in the

policy does not avoid someone who also has f c

relationship with the owner from accessing the resume. In

contrast, f ff c ^ :(f c) allows the co-workers of the user’s

distant friends to see the resume, while the co-workers of

the user’s direct friends f c are not authorized.

In general, conventional OSNs are susceptible to the

multiple-persona problem, where users can al-ways create a

second persona to get default permis-sions. Our approach

follows the default-denial design, which means if there is no

explicit positive authoriza-tion policy specified, there is no

access permitted at all. Based on the default-denial

assumption, negative authorizations in our policy

specifications are mainly used to further refine permissions

allowed by the positive authorizations specified (e.g., f c^:(f

c)). A single negative authorization without any positive

authorization has the same effect as there is no policy

specified at all, but it is still useful to restrict future addition

of positive policies. Nonetheless it is possible for the co-

worker of a direct friend to have a second persona that meets

the criteria for co-worker of a dis-tant friend and thereby

acquires access to the resume. Without strong identities we

can only provide persona level control in such policies.

9

The inclusion of conjunction and negation in gram-mar

may add extra costs in processing, but it em-powers users to

define finer-grained or more strict policies. The above

example path rule f ff c ^ :(f c) shows the utility of the two

notations. However, this is largely a design decision and we

will let users decide how to use them efficiently in their

implementation. If only disjunction exists in a path rule, path

specs with the same hopcount can be composed into a single

regular expression prior to evaluation to improve

performance.

 5 ALGORITHMS

In this section, we present two algorithms for de-termining if

there exists a qualified path between two involved users in an

access request, based on depth-first search (DFS) and

breadth-first search (BFS) strategies. Then, we provide a

complexity analysis for both algorithms.

As mentioned, in order to grant access, relation-ships between

the accessor and the target/controlling user must satisfy the graph

rules specified in access control policies regarding the given

request. We for-mulate the problem as follows: given a social

graph G, an access request < ua, action, target > and an access

policy, the system decision module explores the graph and

verifies the existence of a path between u a and target (or uc of

target) matching the graph rule

< start, path rule >.

 As shown in Algorithm 2 and 4, the path checking algorithm

takes as input the social graph G, the path pattern path and the

hopcount limit hopcount specified by path spec in the policy, the

starting node s specified by start and the evaluating node t which

is the other user involved, and returns a boolean value as output.

Note that path is non-empty, so this algo-rithm only copes with

cases where hopcount 6= 0. The starting node s and the

evaluating node t can be ei-ther the accessing user or the

target/controlling user,

depending on the given policy. The algorithm starts by

constructing a DFA (deterministic finite automata) from

the regular expression path. The REtoDF A() function

receives path as input, and converts it to an NFA

(nondeterministic finite automata) then to a DFA, by using

the well-known Thompson’s Algo-rithm [35] and Subset

Construction Algorithm (also known as Buchi’s¨

Algorithm) [33], respectively.

 5.1 Depth-first Search

Using DFS to traverse the graph requires only one running

DFA and, correspondingly, one pair of vari-ables keeping

the current status and the history of exploration in a DFS

traversal. Whereas, a BFS traver-sal has to maintain

multiple DFAs and multiple vari-ables simultaneously and

switch between these DFAs back and forth constantly,

which makes the costs of memory space and I/O

operations proportional to the number of nodes visited

during exploration. Note that DFS could take a long

traversal to find a target node, even if the node is close to

the starting node. If the hopcount is unlimited, a DFS

traversal may pursue a lengthy useless exploration.

However, as activities in OSNs typically occur among

people with close relationships, DFS with limited

hopcount can minimize

 such unnecessary traversals.

In Algorithm 2, the variable currentP ath, initialized as

N IL, holds the sequence of the traversed edges between the

starting node and the current node. Variable stateHistory,

initialized as the initial DFA state, keeps the history of DFA

states during algorithm execution. The main procedure starts

by setting the current traversal depth d to 0 and launches the

DFS traversal function DF ST () in Algorithm 3 from the

starting node s.

In Algorithm 3, given a node u, if d + 1 does not exceed

the hopcount limit, it indicates that traversing one step

further from u is allowed. Otherwise, the algorithm returns

false (line 2) and goes back to the previous node (line 24).

If further traversal is allowed, then the algorithm picks up

an edge (u; v;) from the list of the incident edges leaving

u. If (u; v;) is unvisited, we get the node v on the opposite

side of the edge (u; v;). Now we have six different cases.

If v is on currentP ath, we will never visit v again, because

doing so creates a cycle on the path. Rather, the algorithm

breaks out of the current for loop, and finds the next

 unchecked edges of u.

When v is not on currentP ath, we check if the transition

belongs to the set of valid transitions for DFA. If the

transition is invalid for DFA, we try the next edge (case 2).

If the transition is valid and v is the target node t, there are

two cases depending on whether taking transition reaches

an accepting state. If it reaches an accepting state, we find

a path between s and t matching the pattern P ath (case 3).

We increment d by one, concatenate edge (u; v;)

to currentP ath, and save the current DFA state to history. If it

does not, we break out of the for loop and continue to check

the next unchecked edge of u (case 4). If the transition is valid

but v is not the target node t, the algorithm increments d by

one, concatenates e to currentP ath, moves DFA to the next

state via transition type , updates the DFA state history, and

repeatedly executes DF ST () from node v (case 5). If the

recursive function call discovers a matching path, the

previous call also returns true. Otherwise, the algorithm has

to step back to the previous node of u, reset all variables to

the previous values, and check the next edge of node u.

However, if d = 0, all the outgoing edges of the starting node

are checked, thus the whole execution completes without a

matching path.

Algorithm 2 DF SP athChecker(G; path; hopcount; s; t)

 1: DF A REtoDF A(path); currentP ath NIL; d 0
2: stateHistory DFA starts at the initial state

 3: if hopcount 6= 0 then

10

 4: return DFST(s)

Algorithm 3 DF ST (u)

 1: if d + 1 > hopcount then
2: return FALSE

3: else
4: for all (v;) where (u; v;) in G do

5: switch
 6: case 1 v 2 currentP ath

7: break
8: case 2 v 2= currentP ath and transition is invalid for

DFA
9: break

10: case 3 v 2= currentP ath and v = t and DFA with

11:

transition is at accepting state d d + 1;

currentP ath currentP ath:(u; v;)
12: currentState DFA takes transition
13: stateHistory stateHistory:(currentState)
14: return TRUE
15: case 4 v 2= currentP ath and v = t and transition is valid

for DFA but DFA with transition is not at accepting state

16: break
17: case 5 v 2= currentP ath and v 6= t and transition is valid

for DFA
 18: d d + 1; currentP ath currentP ath:(u; v;)
19: currentState DFA takes transition
20: stateHistory stateHistory:(currentState)
21: if (DFST(v)) then
22: return TRUE
23: else
24: d d 1; currentP ath currentP athn(u; v;)
25: previousState last element in stateHistory
26:

DFA backs off the last taken transition to

previousState

 27: stateHistory stateHistoryn(previousState)
 28: return FALSE

 5.2 Breadth-first Search

Starting from an initial node, a BFS traversal aims to

expand and examine all nodes of a graph from inside out

until it finds the goal. A FIFO (first in, first out) queue is

created with the starting node as the first element. All the

nodes of a level need to be added to the queue, and will be

dequeued before the nodes of their child level. Similar to

the DFS traversal, we need to create a running DFA and

set up the corre-sponding variables for the search.

However, to find a matching path, a BFS traversal has to

maintain the DFA state and other variables for every

possible path it examines, resulting in a multiple number

of DFAs and variables simultaneously. Although BFS may

nat-urally consume more computational resources, it has

advantage over its DFS counterpart as it never wastes time

on a

 lengthy unsuccessful exploration.

As shown in Algorithm 4, we create a DFA from the

regular expression pattern, enqueue the start-ing node s, and

initialize the variable currentP ath, stateHistory and d of s to

N IL, the initial DFA state and 0, respectively. The algorithm

continues when the queue is not empty, and dequeues the first

node of the queue for further exploration. Given a node q, if

d+1 does not exceed the hopcount limit, the algorithm moves

on to examine the incident outgoing edges of q. All edges can

be classified into the same five cases as in the

abovementioned DFS algorithm. For an edge (u; v;), only

when v is not on currentP ath and v is the target node t and

 DFA taking a valid transition reaches an accepting state, we

find a path between q and t matching the pattern P ath (case

3). We then update the corresponding variables for node v

and exit the algorithm with true. If v is not on currentP ath

and is not the target node, we check the validity of the

transition . If the transition is valid, we will take it, update

the variables of v, and enqueue node v into the queue for

later examination (case 5). In all other cases, a successful

exploration will not possibly occur, thus the edges are

dropped. After checking all edges within the hopcount

limit, the algorithm terminates with false if no matching

path is found.

 5.3 Iterative Deepening Search

With hopcount, the DFS algorithm becomes a depth

limited search. Hence, it avoids drawbacks in classi-cal

DFS regarding completeness. Iterative deepening search

(IDS) algorithm executes depth limited search multiple

times thus yields a worse result than our hopcount-enabled

DFS algorithm. For this reason, we do not consider IDS

further in this paper.

 5.4 Proof of Correctness

The two algorithms are based on the classical DFS and

BFS algorithms with a specific goal of finding qualified

paths between nodes within a given hop-count limit. To

establish the correctness, we need to

Algorithm 4 BF SP athChecker(G; path; hopcount; s; t)

1: DF A REtoDF A(path)

 2: if hopcount 6= 0 then
3: create queue Q
 4:

create node s: s:DF A DF A; s:currentP ath
NIL; s:d 0; s:stateHistory DFA starts at the initial state

5: enqueue s onto Q

6: while Q is not empty do
7: dequeue a node from Q into q
8: if q:d + 1 > hopcount then
9: break

10: else
11: for all (v;) where (q; v;) in G do
12: switch
 13: case 1 v 2 currentP ath
14: break

11

15: case 2 v 2= currentP ath and transition is invalid

for DFA
16: break
17: case 3 v 2= currentP ath and v = t and DFA with

transition is at accepting state
18: create node v (clone from q)
19: v:previousState v:currentState
20: v:currentState DFA takes transition
21: v:d + +
22: v:currentP ath adds (q; v;)
23: v:stateHistory adds currentState
24: return TRUE
25: case 4 v 2= currentP ath and v = t and transition is

valid for DFA but DFA with transition is not at

accepting state
26: break
27: case 5 v 2= currentP ath and v 6= t and transition

is valid for DFA
28: create node v (clone from q)
29: enqueue v onto Q
30: v:previousState v:currentState
31: v:currentState DFA takes transition
32: v:d + +
33: v:currentP ath adds (q; v;)
34: v:stateHistory adds currentState
 35: return FALSE

prove from two aspects: (1) the algorithms will halt with true or

false, and (2) if the algorithms return true, currentP ath gives a

simple path of length less than or equal to Hopcount and the

string described by currentP ath belongs to the language

described by L(P ath); if the algorithms return false, there is no

simple path p of length less than or equal to Hopcount such that

the string representing p belongs to L(P ath).

All edges are classified into five categories using four rules:

(1) is the current node on current traversed path, (2) is the

transition valid, (3) is the edge’s des-tination the target node,

and (4) does taking transition

reach an accepting state. Only edges that fall into case 3

indicate that a qualified path is found, and only edges that

belong to case 5 require the algorithm to take one step further.

The for loop guarantees edge will be visited once and only

once, if a qualified path has been found yet. Rule

(1) avoids cycles in

traversal, and hopcount limit provides a cutoff to halt the

algorithm. Other than that, the two algorithms are identical

with the classical algorithms. Thus, we can use induction

to prove the above properties easily.

 5.5 Complexity Analysis

In the algorithms, every possible path from s to t will be

visited at most once until it fails to reach t, while every

outgoing edge of a node may be checked multiple times

during the search. In the extreme case, where every

relationship type is acceptable and the graph is a complete

directed graph, the overall com-plexity would be O(jV

j
Hopcount

). However, users in OSNs usually connect with

a small group of users directly, thus the social graph is

actually very sparse. We define the maximum and

minimum out-degree of node on the graph as dmax and

dmin, respec-tively. Then, the time complexity can be

 bounded be-

tween O(dmin
Hopcount

) and O(dmax
Hopcount

). Given the

constraints on the relationship types and hopcount limit in

the policies, the size of graph to be explored can be

dramatically reduced. The BFS algorithm and the

recursive DFST() call terminate as soon as either a

matching path is found or the hopcount limit is reached.

 6 IMPLEMENTATION AND EVALUATION
In this section, we present some of the results ob-tained from

our performance studies on the two path-checking algorithms.

We implemented the algorithms in Java, and designed two

sets of experiments to test the runtime execution of an access

request evaluation using both algorithms. We deployed an

access control decider with BFS and DFS path checkers on a

virtual machine instance of an Ubuntu 12.04 image with 4GB

memory and a 2.53 GHz quad-core CPU. The social graphs

to be tested are stored in MySQL databases on the testing

machine along with the sample access control policies. We

designed sample policies and access requests that would

require the access control decider to gather necessary

information and crawl on the graph for access decisions. We

then measured the time the algorithms take to complete a path

checking over the graph and return a result to the decider.

 6.1 Datasets

When designing the experiments, we consider two parameters

of the graphs: hopcount (depth) and degree (width). Although

the total number of nodes in the system may influence the

performance and scalability of many graph systems, in our

system the algorithms are not to explore the whole graph but

the paths with limited hops stemming from one node.

Therefore, the total number of nodes is not significant with

respect to the performance. In fact, it is the hopcount limit and

the number of edges to be explored at each hop

that contribute most to the size of the problem, and hence the

performance of our system.

A significant issue in this evaluation consists in the selection

of representative datasets. There are some public available

datasets collected from real-world OSN systems with large

amount of real data. How-ever, most of them only consider single

relationship type or do not support relationship type at all. In a

related analysis [7], the authors modified the original datasets to

add type information, where relationship types are uniformly

distributed. However, manually adding type information to the

real datasets may not reflect the actual user behaviors, and thus

ruins the integrity of the datasets and diminishes the value of

12

having real data. Moreover, different real datasets pos-sess

various properties, making them incomparable with each other.

Hence, synthetic data becomes an alternative for us, where we

can configure different social graphs under our control, and

analyze some specific properties of these graphs. To generate

syn-thetic social graphs, we use neither the G(n, p) nor the

G(n,m) variation of the ErdosRenyi model, because both of them

create graphs in which each node may have different number of

edges. Instead, since our experiment is focused on the

comparison on density, we set the outgoing degree of each node

to a fixed number in each graph. The selection of the destination

of each edge is random.

In the first set of experiments, we examine the performance

of the BFS and DFS algorithms with respect to policies with

different hopcount limit. In particular, we set the parameters

to 1000 users and single relationship type for this set of

experiments. Each user has the same number of neighbors,

who are randomly selected among the rest 999 users. Two dif-

ferent kinds of path patterns, including enumeration and *-

pattern, are used in the policies to investigate the impact of

hopcount limit on the performance of the algorithms.

In the second set of experiments, we aim to study the

performance of the algorithms against various number of

edges that need to be traversed (i.e., the average degree of

nodes in the graph) to show the scalability of our approach

against dense graph. We keep the same 1000 users as in the

previous experi-ments, but enable two types of relationships,

namely “f(riend)” and “c(oworker)”, and randomly assign

each relationship between users with one of these types. The

number of neighbors for each user is set in the quantities of

100, 200, 500 and 1000. Consider the fact that there are only

two types of relationship and the social graph in reality is

usually a sparse graph, 1000 neighbors for each of 1000 users

makes a relatively “dense” social graph for evaluation. We

then run different policies on these four graphs to compare

their differences.

Given an access control policy, we randomly pick 1000

different pairs of requester and target nodes from

the graph, and run each algorithm 5 times on these 1000 pairs

of nodes. Each measurement is the average results of these

5000 runs. To make fair comparison between true and false

cases, we design different policies to get 5000 true cases and

5000 false cases. To evenly compare between true cases of

different settings, we scale the number of selected users so

that we can get results from the same amount of true cases.

 6.2 Results

Figure 4 illustrates the results of the first set of ex-periments.

We compare the BFS and DFS algorithms using policies with

different hopcount limits in both the true-case and false-case

scenarios. For true cases of *-pattern paths, Figure 4 (a) shows

how the average running time changes with respect to

increase in hopcount limit. To make a more comprehensive

comparison, in this particular test, we apply the following

values 10, 50 and 200 (which is close to 190, the average

number of friends claimed by Facebook [37]) to the number

of neighbors for each user. *-pattern paths are known to be

more flexible than enumeration paths in path-checking. In

fact, the results for *-pattern record the time elapse of finding

one of the shortest qualified path. As we expected, when

hopcount increments, the average execution time required for

both algorithms increases as well, but the trends tend to flatten

after the hopcount reaches 4. It indicates that a qualified path

can be always found between two users within 4 hops in this

setting. A probability calculation also verifies this finding. In

the case of 10 neighbors per user, the aggregate probability of

finding a qualified path is 1%, 10.5%, 67.3% for the first three

hops, respectively, and eventually 100% at the fourth hop.

The probability reaches 100% within 3 hops in the other two

denser graphs. We also find that the BFS algorithm works

slightly better than the DFS algorithm for large hopcount limit

in sparse graphs, as DFS takes many lengthy probes before

finding a qualified path while BFS does not suffer from much

overhead in sparse graphs.

According to the classic idea of “six degrees of sepa-

ration” and the findings of “small world experiment” [30],

[36], any pair of people are distanced by no more than six

intermediate connections on average. A recent study by

Backstrom et al [1] further indicates that the average distance

on the current social graph of Facebook is smaller than the

commonly cited six degrees, and has shrunk to 4.74 as

Facebook grows. Based on these findings, for true cases of

enumeration paths, we restrain the hopcount limit up to 4, as

our dataset is relatively much smaller than Facebook. As

shown in Figure 4 (b), when hopcount limit incre-ments, the

time cost by the BFS algorithm increases significantly, due to

the fact that it will not take the next hop without finishing

search on all edges at the current level; whereas a greater

hopcount does not worsen the performance of the DFS

algorithm much.

Figure 4 (c) demonstrates the comparison between the two

algorithms in false-case scenarios. The false-case scenarios

actually represent the worst case sce-nario for path-checking,

where both algorithms need to exhaustively search all

possible paths within the hopcount limit from the starting

node. Therefore, the two algorithms perform similarly in both

enumeration and *-pattern settings. As hopcount increases,

the time costs of the algorithms increase approximately in the

magnitude of node degree, which match our expectation given

in the complexity analysis.

Figure 5 represents a comparison of the perfor-mance of the

two algorithms on graphs with different node degrees. In truecase

scenarios, as shown in Figure 5 (a, b and c), we notice that

incrementing hop-count limit increases the time for both

algorithms to find a qualified path, since the search space

expands accordingly. We also observe that when dealing with 2-

hop policies, the time cost declines gradually with an increase in

node degree. This is mainly because it is more possible to find a

qualified path between two nodes at an earlier time in denser

13

graphs than sparser graphs, although the worst possible time for

denser graphs is way larger. For 3-hop policies, however, BFS

algorithm has to explore all possible paths at the first 2 hops until

attempting the 3rd hop, thus spending much more time to find a

match when node degree increases. DFS algorithm, on the other

hand, does not suffer from the greater search space brought by

the increase of node degree. In general, both algo-rithms perform

similarly on 1 and 2-hop policies, but DFS algorithm outperforms

its BFS counterpart when dealing with 3-hop policies and larger.

Similar to the first set of experiments, we obtain similar results

for both algorithms in false-case scenarios (5 (d)), as both of them

experienced an exhaustive search. Consistent with our previous

analysis on complexity, the results we observed from the four

different social graphs reveal an increase of time proportional to

the node degrees as expected.

Our results indicate that both node degree and hopcount limit

significantly affect the performance of the two algorithms. In

some extreme cases (e.g., long enumeration paths, high density

graph, etc.), searching a qualified path of 3 hops long may take

very long time that the system and users cannot tol-erate.

However, social graphs in reality are often big and sparse, not

many people will have thousands of contacts in the social

network. Moreover, people tend to interact with other users

within a close distance, so a large hopcount is rather uncommon

in practice. If users specify policies with loose constraints (e.g.,

*-patterns) and small hopcount limit, the algorithms are able to

return a result in a reasonably short time. We also suggest the

system adds a time out for any access query in order to avoid

waiting for those extreme scenarios. Another possible way of

mitigating lengthy hops is to allow users to have a customized

view

of social graph and create shortcuts for frequently used

relationship patterns. Caching might also be an alternative for

improving performance [16]. Another important observation

from our experiments is that although they have almost the

same performance for 1 and 2-hop policies, DFS algorithm in

general is likely to be more suitable for policies with

intermediate hop-count values (e.g., 3, 4, 5, etc) than its BFS

counterpart.

 7 CONCLUSION

In this paper, we proposed a UURAC model and a regular

expression based policy specification lan-guage. We

provided DFS-based and BFS-based path checking

algorithms and analyzed the complexity for the

algorithms. We demonstrated the feasibility of our

approach by discussing a proof-of-concept implemen-

tation of both algorithms, followed by the evaluation

results.

 3 3

 Hopcount Hopcount Hopcount

 (a) True-case scenarios: *-patterns (b) True-case scenarios: enum-patterns (c) False-case scenarios

 Fig. 4: Experiment 1: BFS vs DFS on hopcount

14

We believe the proposed model in this paper pro-vides

a solid foundation for more advanced ReBAC solutions in

the future. We have extended this work to a new model,

namely URRAC, which exploits user-to-resource and

resource-to-resource relationships as well [13]. We have

also proposed an attribute-aware UURAC model that

incorporates attribute-based poli-cies to ReBAC [15].

ACKNOWLEDGMENT

This work is partially supported by grants CNS-0831452

and CNS-1111925 from the National Science Foundation.

REFERENCES

[1] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna. Four

degrees of separation. CoRR, abs/1111.4570, 2011.
[2] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin.

Persona: an online social network with user-defined privacy. ACM

SIGCOMM Computer Communication Review, 39(4):135– 146,

2009.
[3] d. m. boyd and N. B. Ellison. Social network sites: Definition, history,

and scholarship. Journal of Computer-Mediated Communication,

13(1):210–230, 2007.

[4] S. Braghin, V. Iovino, G. Persiano, and A. Trombetta. Secure and

policy-private resource sharing in an online social net-work. In

PASSAT 2011, pages 872–875. IEEE, 2011.
[5] G. Bruns, P. W. Fong, I. Siahaan, and M. Huth. Relationship-based

access control: its expression and enforcement through hybrid logic.
In Proceedings of the second CODASPY, pages 117–124. ACM,

 2012.
[6] B. Carminati and E. Ferrari. Collaborative access control in on-line

social networks. In CollaborateCom 2011, pages 231–240. IEEE,
 2011.
[7] B. Carminati, E. Ferrari, and J. Girardi. Performance analysis of

relationship-based access control in osns. In IEEE IRI 2012, pages 449–

456, 2012.

[8] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and
B. Thuraisingham. A semantic web based framework for social network

access control. In Proceedings of the 14th ACM SACMAT,
 pages 177–186. ACM, 2009.
[9] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and B.

Thuraisingham. Semantic web-based social network access control.
Computers and Security, 30(2C3), 2011.

[10] B. Carminati, E. Ferrari, and A. Perego. Rule-based access control for

social networks. In On the Move to Meaningful Internet Systems 2006:

OTM 2006 Workshops, pages 1734–1744. Springer, 2006.
[11] B. Carminati, E. Ferrari, and A. Perego. A decentralized security

framework for web-based social networks. Int. Journal of Info. Security

and Privacy, 2(4), 2008.
[12] B. Carminati, E. Ferrari, and A. Perego. Enforcing access control in

web-based social networks. ACM Trans. Inf. Syst. Secur., 13(1),
 2009.
[13] Y. Cheng, J. Park, and R. Sandhu. Relationship-based access control for

online social networks: Beyond user-to-user rela-tionships. In PASSAT

2012, pages 646–655. IEEE, 2012.
[14] Y. Cheng, J. Park, and R. Sandhu. A user-to-user relationship-based

access control model for online social networks. In Data and
Applications Security and Privacy XXVI, pages 8–24. Springer,

 2012.
[15] Y. Cheng, J. Park, and R. Sandhu. Attribute-aware relationshipbased

access control for online social networks. In Data and Applications

Security and Privacy XXVIII, pages 292– 306. Springer, 2014.

[16] J. Crampton and J. Sellwood. Caching and auditing in the RPPM model.

In Security and Trust Management, pages 49–64. Springer,
 2014.
[17] J. Crampton and J. Sellwood. Path conditions and principal matching: a

new approach to access control. In Proceedings of the 19th ACM

SACMAT, pages 187–198. ACM, 2014.
[18] P. W. Fong. Relationship-based access control: protection model and

policy language. In Proceedings of the first CO-DASPY, pages 191–

202. ACM, 2011.
[19] P. W. Fong, M. Anwar, and Z. Zhao. A privacy preservation model for

facebook-style social network systems. In Computer Security–

ESORICS 2009, pages 303–320. Springer, 2009.
[20] P. W. Fong and I. Siahaan. Relationship-based access control policies

and their policy languages. In Proceedings of the 16th SACMAT, pages

51–60. ACM, 2011.

 6

 100 200 500 1;000

Node degree

(a) True-case scenarios: hopcount 1

 2;000

1 - BFS

4
 1 - DFS

2

0

 3 - BFS

1;500 3 - DFS

1;000

500

0

15

 100 200 500 1;000

Node degree

(c) True-case scenarios: hopcount 3

60

 100 200 500 1;000

Node degree

 (b) True-case scenarios: hopcount 2

Node degree

(d) False-case scenarios

Fig. 5: Experiment 2: BFS vs DFS on node degree

2;000
2 - BFS 1;500
2 - DFS

1;000

500

8
1 - BFS

6
1 - DFS

4

2
0

500 1;000 100 200

2 - BFS

40
 2 - DFS

20

0

[21] H. Gao, J. Hu, T. Huang, J. Wang, and Y. Chen. Security issues in online social networks. Internet Computing, IEEE,

15(4):56– 63,
 2011.

[22] C. Gates. Access control requirements for Web 2.0 security and privacy. IEEE Web 2.0, 2007.
[23] M. Hart, R. Johnson, and A. Stent. More content-less control:

Access control in the Web 2.0. IEEE Web 2.0, 2007.
[24] H. Hu and G.-J. Ahn. Multiparty authorization framework for data sharing in online social networks. In Data and Applications

Security and Privacy XXV, pages 29–43. Springer, 2011.
[25] H. Hu, G.-J. Ahn, and J. Jorgensen. Detecting and resolving privacy conflicts for collaborative data sharing in online social

networks. In Proceedings of the 27th ACSAC, pages 103–112. ACM, 2011.
[26] H. Hu, G.-J. Ahn, and J. Jorgensen. Multiparty access control for online social networks: model and mechanisms.

Knowledge and Data Engineering, IEEE Transactions on, 25(7):1614–1627, 2013.
[27] S. Jahid, P. Mittal, and N. Borisov. Easier: Encryption-based access control in social networks with efficient revocation. In Proceedings of

the 6th ACM Symposium on Information, Computer and Communications Security, pages 411–415. ACM, 2011.
[28] S. R. Kruk, S. Grzonkowski, A. Gzella, T. Woroniecki, and H.-C. Choi. D-FOAF: Distributed identity management with

access rights delegation. In The Semantic Web–ASWC 2006, pages 140–154. Springer, 2006.
[29] A. Masoumzadeh and J. Joshi. OSNAC: An ontology-based access control model for social networking systems. In Social-

Com 2010, pages 751–759. IEEE, 2010.
[30] S. Milgram. The small world problem. Psychology today, 2(1):60– 67, 1967.
[31] J. Park, R. Sandhu, and Y. Cheng. ACON: Activity-centric access control for social computing. In ARES 2011, pages 242–

247. IEEE,
 2011.

[32] J. Park, R. Sandhu, and Y. Cheng. A user-activity-centric framework for access control in online social networks. In-ternet

Computing, IEEE, 15(5):62–65, 2011.
[33] M. O. Rabin and D. Scott. Finite automata and their decision

problems. IBM journal of research and development, 3(2):114–125,

 1959.
[34] A. C. Squicciarini, M. Shehab, and F. Paci. Collective privacy management in social networks. In Proceedings of the 18th

international conference on World wide web, pages 521–530. ACM,
 2009.

[35] K. Thompson. Programming techniques: Regular expression search algorithm. Communications of the ACM, 11(6):419–

422, 1968.
[36] J. Travers and S. Milgram. An experimental study of the small world problem. Sociometry, 32(4):425–443, 1969.
[37] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The anatomy of the facebook social graph. CoRR, abs/1111.4503,

2011.

