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DOMESTIC ANIMAL HEALTH MONITORING USING 

WIRELESS TECHNOLOGY

Abstract—In this paper, we consider the animal object detection 
and segmentation from wildlife monitoring videos captured by 
motion-triggered cameras, called camera-traps. For these types 
of videos, existing approaches often suffer from low detection 
rates due to low contrast between the foreground animals and 
the cluttered background, as well  as high  false  positive rates 
due to the dynamic background. To address this issue, we first 
develop a new approach to generate animal object region proposals 
using multilevel graph cut  in the  spatiotemporal domain. We 
then develop a cross-frame temporal patch verification method to 
determine if these region proposals are true animals or background 
patches. We construct an efficient feature description for animal 
detection using joint deep learning and histogram of oriented 
gradient features encoded with Fisher vectors. Our extensive 
experimental results and performance comparisons over a diverse 
set of challenging camera-trap data demonstrate that the proposed 
spatiotemporal object proposal and patch verification framework 
outperforms the state-of-the-art methods, including the recent 
Faster-RCNN method, on animal object detection accuracy by up 
to 4.5%.

Index Terms—Background modeling, camera-trap images, 
graph cut, object proposal, object verification.

I. INTRODUCTION

ILDLIFE monitoring with camera-trap networks, espe-
cially with the collaborative efforts of citizen scientists,

enable us to collect wildlife activity data at large space and 
time scales and to study the impact of climate change, habitat 
modification and human disturbance on species richness and 
biodiversity along the dimensions of scale, region, season, and 
species [1]. Camera-traps are stationary camera-sensor systems 
attached to trees in the field. Triggered by animal motion, they 
record short image sequences of the animal appearance and 
activities associated with other sensor data, such as light level,
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moisture, temperature, and GPS sensor data. They are an impor-
tant visual sensor for wildlife that can record animal appearance 
without disturbance. Due to their relatively low cost, rapid de-
ployment, and easy maintenance, camera traps are now being 
extensively used in wildlife monitoring, with the potential to be 
deployed at large scales in space and time. From camera-trap 
images, we can extract a rich set of information about animal ap-
pearance, biometric features, species, behaviors, their resource 
selection, as well as important environmental features about the 
surrounding habitats [2]. During the past several years, a vast 
amount of camera-trap data has been collected, far exceeding 
the capability of manual image processing and annotation by 
human. There is an urgent need to develop animal detection, 
segmentation, tracking, and biometric feature extraction tools 
for automated processing of these massive camera-trap datasets. 
In this work, we focus on accurate and reliable animal object 
detection and segmentation from camera-trap images.

Detecting and segmenting moving objects from the back-
ground is an important and enabling step in intelligent video 
analysis [3], [4]. There is a significant body of research con-
ducted during the past two decades on background modeling 
and foreground object detection [5]–[7]. However, the avail-
ability of methods that are robust and generic enough to handle 
the complexities of natural dynamic scenes is still very lim-
ited [8]. Videos captured in natural environments represent a 
large class of challenging scenes that have not been sufficiently 
addressed in the literature [4]. These types of scenes are often 
highly cluttered and dynamic with swaying trees, rippling water, 
moving shadows, sun spots, rain, etc. It is getting more compli-
cated when natural animal camouflage added extra complexity 
to the analysis of these scenes. Fig. 1 shows some examples of 
image sequences captured by camera-traps at days (with color 
images) and nights (with infrared images). Here, each column 
represents a camera-trap image sequence triggered by animal 
motion. The key challenge here is how to establish effective 
models to capture the complex background motion and texture 
dynamics while maintaining sufficient discriminative power to 
detect and segment the foreground animals. Traditional motion-
based techniques are not suitable here since the background is 
highly dynamic.

Recently, approaches based on deep neural networks, such as 
RCNN [9] and its variations Fast-RCNN [10] and Faster-RCNN 
[11], are achieving the state-of-the-art performance in object de-
tection. Typically, these methods have two major components:
1) object region proposal which scans the whole image to gen-
erate a set of candidate image regions (or bounding boxes
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Fig. 1.   Samples of camera-trap images. Each column represents a camera-trap 
image sequence triggered by animal motions.

Fig. 2.   Examples of bounding box proposals from spatial only and spatial-
temporal methods. Each bounding box denotes a candidate object region. Top: 
selective search algorithm. Bottom: proposed IEC. The columns represent dif-
ferent scenes.

different locations and scales that could possibly contain the tar-
get objects, and 2) image classification which determines if these 
proposed regions are truly the objects or not. We observe that, 
within the context of animal detection from camera-trap images, 
these methods suffer from two major issues: speed and accu-
racy. First, the natural scenes in camera-trap images are highly 
cluttered. Existing object region proposal methods [12], [13] 
often generate a large number (thousands) of candidate object 
regions. We know that the deep convolutional neural network 
(DCNN) for region classification is computationally intensive 
and, more importantly, it needs to be performed thousands of 
times for each of these proposed object regions. Therefore, it 
is critical to consider the unique characteristics of camera-trap 
images in the spatiotemporal domain and design a new and effi-
cient object region proposal method which can generate a small 
number of animal object proposals. To this end, we develop an 
iterative embedded graph cut (IEC) method with different fore-
ground/background cut-off energy levels to create an embedded 
group of objects regions for the camera-trap image sequences. 
The examples in Fig. 2 show that IEC could significantly reduce 
the number of proposals while maintaining a sufficiently high

object coverage rate. Second, we find that the direct application 
of DCNN to object regions in a single image is not efficient 
for animal-background classification. The performance can be 
significantly improved by extending the classification into the 
temporal domain using our proposed cross-frame patch verifi-
cation method. Furthermore, for efficient animal object region 
classification, we find that a combination of DCNN and hand-
crafted features achieves better classification performance. Our 
extensive experimental results demonstrate that the proposed 
method significantly improves the performance while maintain-
ing low computational complexity.

The major contributions of this paper can be summarized as 
follows: 1) We have developed a new and efficient animal object 
region proposal method using IEC which jointly consider the 
animal motion and spatial context in the spatiotemporal domain.
2) We propose a cross-frame image verification method for ac-
curate animal-background classification. 3) We have found that, 
for camera-trap images, the DCNN image features and hand-
crafted histogram of oriented gradient (HOG) image features 
encoded with Fisher Vectors (FV) are able to enhance the clas-
sification performance for each other. 4) We have established a 
large dataset of camera-trap images which has been made avail-
able for the research community for developing efficient algo-
rithms of object detection from highly cluttered natural scenes. 

The remainder of the paper is organized as follows. We pro-
vide an overview of the proposed system in Section III. In 
Section IV, we present our animal object proposal method using 
iterative embedded graph cut. Section V explains the proposed 
cross-frame verification method. Experimental results are pre-
sented in Section VI. Section VII concludes the paper.

II. RELATED WORK

This work is closely related to foreground-background seg-
mentation, image verification, object region proposal, object 
detection and image classification. In the following, we provide 
a review of related work on these topics.

A. Foreground-Background Segmentation

Early work on background subtraction often operated on the 
assumption of stationary background. Several methods model 
the background  explicitly,  assuming a bootstrapping phase 
where the algorithm is presented with frames containing only 
the background [14], [15]. The use of multiple hypotheses to 
describe the behavior of an evolving scene at the pixel level 
significantly improves the performance of background mod-
eling and subtraction [15]. Elgammal et al. [16] used a non-
parametric background model to achieve better accuracy under 
the same constraints as the mixture of Gaussians. Sheikh and 
Shah incorporate the temporal and spatial consistencies into a 
single model [3]. Oliver et al. [17] focused on global statistics 
rather than local constraints to create a small number of eigen-
backgrounds to capture the dominant variability of background. 
Considering spatial context and neighborhood constraints, graph 
cut optimization has achieved fairly good performance in im-
age segmentation [7]. Iterated graph cut is used in [6] to search 
over a nonlocal parameter space. Background cut is proposed



in [18] which combines background subtraction and color or 
contrast-based models.

To handle background motion, various dynamic background 
texture models have been developed [15], [19]. Principal com-
ponent analysis and autoregressive models are used in [17]. 
Wiener filters are used to predict the expected pixel value based 
on the past K samples. To reduce the computational complex-
ity, Kahl et al. [20] demonstrated that using eigen-background 
on patches in an image is sufficient to capture the variance in 
dynamic scenes. In [21], for each pixel, it builds a codebook. 
Samples at each pixel are clustered into the set of codewords 
based on a color distortion metric. Gregorio and Giordano [22] 
use a weightless neural network to model the change in back-
ground. St-Charles and Bilodeau et al. [23] introduce a new 
strategy to tackle the problem of non-stationary background 
with pixel-level feedback loops to balance the local segmenta-
tion sensitivity automatically.

We recognize that, for accurate and robust video object detec-
tion and segmentation in dynamic scenes, background modeling 
of the dynamic pixel process at the image patch level, spatial 
context analysis and graph cut optimization at the region-level, 
and embedded foreground-background classification at the se-
quence level should be jointly considered. In this work, we 
propose to establish a new framework which tightly integrates 
these three important components for accurate and robust video 
object cut in highly dynamic scenes.

B. Region Proposals and Object Detection Using
DCNN Methods

Recent studies [24], [25] have shown the extraordinary per-
formance of DCNNs on image classification, object detection 
and recognition. To speed up the DCNN-based object detection 
process and avoid scanning of the whole image, object proposal 
methods have been recently developed for predicting object 
bounding boxes [11], [26]–[29]. Szegedy et al. [26] used a deep 
neural network as a regression model to predict the object bound-
ing box. Sermanet et al. [28] developed a fully connected layer 
that is trained to predict the box coordinates for the localiza-
tion task that assumes a single object. The fully connected layer 
is then turned into a convolutional layer for detecting multiple 
class-specific objects, which won the ILSVRC2013 localiza-
tion competition. The original work on MultiBox [27] also used 
deep neural networks. Instead of producing bounding boxes, the 
MultiBox approach generates region proposals from a network 
whose last layer simultaneously predicts multiple class-agnostic 
boxes.

C. Image Verification

This work is also related to image verification. Image verifi-
cation, in our particular problem, is regarded as a two-class clas-
sification problem: to verify if a proposed object image patch is 
an animal or belongs to the background scene. Classic learning-
based image verification often involves two major steps: fea-
ture representation and distance or metric learning. Features 
used for image verification include colors, HOG, Haar-like 
descriptors, SIFT or SURF key point descriptors, maximally

stable color regions, texture filters, differential local informa-
tion, co-occurrence matrices, etc [30]. Statistics of low-level 
features, such as bag of words (BoW) descriptors, are also used 
for image verification to handle spatial variations. Recently, 
FVs [31] are developed which provides a better model to en-
code the local features. A number of methods built upon this 
FV approach [32], [33] have shown outstanding performance in 
image representation.

In  this work, we  propose to  develop an effective cross-
frame image verification method to  determine if  an image 
patch belongs to the background or not. This problem be-
comes very challenging since the background is highly dynamic 
and cluttered. In this work, we will demonstrate that a com-
bination of DCNN features and hand-crafted image features 
specifically designed for camera-trap data is able to achieve 
significantly improved  performance in animal image patch 
verification.

III. ALGORITHM OVERVIEW

We recognize that accurate and efficient animal detection 
from highly cluttered natural scenes in camera-trap images is a 
challenging task. To achieve accurate and fine-grain animal de-
tection from the background, we need to perform image analysis 
at the pixel or small block level. However, with the low-contrast 
between the foreground animal and the cluttered background, 
it is often very difficult to determine if a pixel or a pixel block
belongs to the animal or background based on local neighbor-
hood information only, unless we resort to global image feature 
analysis. For example, pixels on the deer body might be very 
similar to the background vegetation. In this case, it is difficult 
for us to determine if these pixels belong to the deer based on 
local neighborhood information only until we see the deer head 
and legs, which involves global image analysis.

To address this issue, in this work, we propose a new animal-
background detection framework which tightly couples object 
proposal using local image segmentation with global image re-
gion verification, as illustrated in Fig. 3. Specifically, it has 
two major components: 1) IEC for animal object proposal and
2) cross–frame patch-level object verification. The first com-
ponent of IEC analyzes local image features and operates at 
the level of pixels or small blocks of pixels so as to maintain 
low computational complexity and achieve multi-level image 
segmentation in order to generate candidate regions for animal 
objects. To achieve high detection rate and ensure animals are 
all detected and covered in the foreground regions, we need to 
use a series of energy levels for the IEC so as to create an em-
bedded set of regional proposals. Certainly, besides the target 
animal objects, the proposed regions will also contain regions 
or image patches from the background. The second component 
of image verification performs global comparison between fore-
ground regions and background images across multiple frames. 
It extracts global features from the whole image patch, learns an 
image verification model to determine whether an image patch 
is similar to the background or not. In the following sections, 
we will explain these two components in more detail.



TABLE IV
PERFORMANCE COMPARISON ON CAMERA_TRAP DATASET

EC Best YOLO[45]

voc07+voc12 
camera-trap

Fast-RCNN[10]

voc07+voc12 
camera-trap

Faster-RCNN[11]     IEC+DCNN       Proposed

Train-set
Finetune-set

voc07+voc12 
camera-trap

camera-trap camera-trap

Agouti 0.7382 0.7239 0.8088 0.8105 0.8218 0.8364
Collared Peccary 0.8436 0.8516 0.8838 0.8865 0.9049 0.9202
Paca 0.7799 0.7658 0.797 0.8055 0.7946 0.8226
Red Brocket Deer 0.7772 0.7905 0.8492 0.8794 0.8587 0.8723
White-nosed Coati 0.8221 0.8016 0.8739 0.8883 0.8893 0.8993
Spiny Rat 0.6908 0.7016 0.7729 0.7924 0.789 0.8092
Ocelot 0.7935 0.7893 0.8592 0.8796 0.8732 0.8855
Red Squirrel 0.7978 0.7761 0.8682 0.8901 0.8839 0.8914
Common Opossum 0.7395 0.7582 0.8187 0.8456 0.8263 0.8623
Bird spec 0.5505 0.4968 0.6083 0.6188 0.6515 0.6717
Great Tinamou 0.6964 0.7247 0.8282 0.8473 0.8546 0.8699
White-tailed Deer 0.7847 0.8165 0.8251 0.8549 0.8403 0.8611
Mouflon 0.7788 0.7743 0.8197 0.8395 0.8429 0.8782
Red Deer 0.8555 0.8642 0.8792 0.9052 0.898 0.9008
Roe Deer 0.8353 0.8548 0.8853 0.8968 0.8956 0.9076
Wile Boar 0.8013 0.8553 0.8732 0.9018 0.8922 0.907
Red Fox 0.676 0.6548 0.7538 0.7682 0.7765 0.7933
European Hare 0.6695 0.6561 0.7862 0.7892 0.7983 0.8283
Wood Mouse 0.7176 0.6815 0.7972 0.8136 0.8098 0.8357
Coiban Agouti 0.6678 0.6915 0.7982 0.8046 0.8121 0.8221

Average 0.7587 0.7674 0.8251 0.8493 0.8417 0.8597

Metrics showing average Recalls.

TABLE III
PERFORMANCE COMPARISON ON CAMERA_TRAP DATASET

EC Best YOLO[45] Fast-RCNN[10] Faster-RCNN[11] IEC+DCNN Proposed

Train-set voc07+voc12 voc07+voc12 voc07+voc12 camera-trap camera-trap
Finetune-set camera-trap camera-trap camera-trap

Agouti 0.7632 0.7593 0.742 0.7514 0.7875 0.8244
Collared Peccary 0.8209 0.8359 0.8015 0.8094 0.7682 0.8152
Paca 0.7969 0.8169 0.8039 0.8289 0.8122 0.8333
Red Brocket Deer 0.8563 0.8915 0.8517 0.8879 0.8658 0.8867
White-nosed Coati 0.8059 0.8314 0.7899 0.7952 0.803 0.8221
Spiny Rat 0.7539 0.7642 0.7193 0.7314 0.7604 0.7756
Ocelot 0.7918 0.8192 0.7726 0.7952 0.8011 0.8154
Red Squirrel 0.7345 0.7682 0.7328 0.7437 0.7638 0.7727
Common Opossum 0.7816 0.8164 0.7951 0.8155 0.8023 0.8205
Bird spec 0.6527 0.7465 0.6412 0.6619 0.6898 0.7228
Great Tinamou 0.789 0.8349 0.8035 0.8148 0.8313 0.8441
White-tailed Deer 0.8218 0.8432 0.8303 0.8792 0.8551 0.8671
Mouflon 0.7594 0.8448 0.7692 0.7846 0.7922 0.8107
Red Deer 0.7947 0.8214 0.7963 0.7991 0.8234 0.8391
Roe Deer 0.7969 0.8391 0.7793 0.7925 0.8022 0.8218
Wile Boar 0.7863 0.8417 0.7965 0.805 0.8131 0.8282
Red Fox 0.6471 0.7349 0.6752 0.6849 0.7056 0.7358
European Hare 0.7156 0.7514 0.7391 0.7485 0.753 0.772
Wood Mouse 0.7094 0.7539 0.7293 0.7336 0.7493 0.7632
Coiban Agouti 0.7316 0.7815 0.749 0.7598 0.7732 0.7778

Average 0.7824 0.8315 0.7801 0.7886 0.8017 0.8209

Agouti 0.7505 0.7436 0.7783 0.7825 0.8043 0.8303
Collared Peccary 0.8321 0.8246 0.8455 0.8546 0.831 0.8646
Paca 0.7883 0.7816 0.8004 0.8145 0.8035 0.828
Red Brocket Deer 0.8148 0.8241 0.8568 0.8803 0.8622 0.8795
White-nosed Coati 0.814 0.8348 0.8398 0.8415 0.8439 0.859
Spiny Rat 0.721 0.7282 0.7485 0.7503 0.7745 0.7921
Ocelot 0.7926 0.7844 0.8048 0.8117 0.8356 0.849
Red Squirrel 0.7648 0.7486 0.7892 0.7962 0.8194 0.8278
Common Opossum 0.76 0.7782 0.8071 0.8286 0.8142 0.8409
Bird spec 0.5973 0.5543 0.6367 0.6488 0.6701 0.6963
Great Tinamou 0.7398 0.7581 0.8143 0.8185 0.8428 0.8568



TABLE IV
PERFORMANCE COMPARISON ON CAMERA_TRAP DATASET

EC Best YOLO[45]

voc07+voc12 
camera-trap

Fast-RCNN[10]

voc07+voc12 
camera-trap

Faster-RCNN[11]     IEC+DCNN       Proposed

Train-set
Finetune-set

voc07+voc12 
camera-trap

camera-trap camera-trap

White-tailed Deer 0.8028 0.8147 0.847 0.8672 0.8476 0.8641
Mouflon 0.769 0.7498 0.7962 0.8067 0.8168 0.8431
Red Deer 0.824 0.8345 0.8397 0.8416 0.8591 0.8689
Roe Deer 0.8157 0.8354 0.8254 0.8435 0.8463 0.8626
Wile Boar 0.7937 0.8491 0.8312 0.8477 0.8508 0.8658
Red Fox 0.6612 0.6814 0.7162 0.7211 0.7394 0.7634
European Hare 0.6918 0.6815 0.7573 0.7604 0.775 0.7992
Wood Mouse 0.7135 0.6981 0.7681 0.7692 0.7784 0.7978
Coiban Agouti 0.6982 0.7204 0.7582 0.7685 0.7921 0.7993

Average 0.7703 0.7515 0.7937 0.8043 0.8212 0.8398

Metrics showing average F-scores.

And we use 20 original classes objects as positive samples, 
marked as 1. For all verification models in experiments, we 
finetune a 2-way classification model, with a batch size 128, 
learning rate 0.01, momentum 0.9 and a decay of 0.0005. We 
continue training with a maximum iteration 40 000 on camera-
trap, and 80 000 on Pascal VOC, respectively. When training 
accuracy is higher than 98% and stopped climbing for a while, 
we stop the training to prevent over-fitting.

C. Experimental Results

1)  Qualitative Evaluations: Fig. 10 shows some example 
experimental results on four sequences from different species, 
which are Red Fox, Great Tinamou, European Hare and Paca, 
respectively. Row (a) is the original image from the camera-trap. 
Due to space limitations, we only include 3 out 10 images here. 
Row (b) shows the segmentation results after the video object 
graph cut. The animal body boundaries (shapes) are not very 
accurate and there a significant amount of incorrect segmenta-
tion results. After several iterations of cross-frame information 
fusion and graph cuts by utilizing existing background infor-
mation, better results are achieved in row (c). We can see that 
false positive patches caused by background variations, such as 
shadows, waving leaves, and moving clouds, are still in the seg-
mentation results. Row (d) shows the final results after animal-
background verification. These false positive patches have been 
successfully removed. Row (e) shows the animal pixels with row 
(d) as the mask. We can see that the proposed method is able 
to achieve very accurate and reliable segmentation of the fore-
ground animals in dynamic scenes by preserving true positives 
and filtering out false positives. Fig. 11 shows some examples of 
animal segmentation from highly cluttered and dynamic natural 
scenes.

2) Quantitative Results: We first compare the performance 
of our animal object proposal method using IEC with the follow-
ing state-of-the-art object proposal methods: Spatial-Temporal 
Object Detection Proposals (STODP) [44], Fully Connected 
Object Proposals for Video Segmentation (FCOP) [43], and 
Learning to Segment Moving Object in Videos (MOP) [42]. For 
reference purposes, we also compare the performances of sin-
gle frame object proposal techniques, as proposed in Geodesic 
Object Proposals [41] and Selective Search [12]. The latter is 
very popular and is used in RCNN and fast-RCNN as the en-
abling proposal method. Table I provides the average number 
of proposal bounding box required by each method in order 
to cover 80%, 90% and the most ground-truth animal objects, 
respectively. Here, coverage is the percentage of ground-truth 
bounding boxes which have IoU 0.5 with any box in detec-
tion proposal list. The best coverage rate indicates the capability 
of detecting all objects in every frame. Improving the coverage 
is hard and costly, which often results in a massive amount of 
proposal detections. We can see that our proposed method is 
much more efficient than existing methods at the coverage rates 
of 80% and 90%, and find a good trade-off between the number 
of proposals (which affects the subsequent verification time) 
and the coverage rate. The single-frame based methods, such as 
the Selective search and GOP often produce a large amount of 
proposals. The limitation of proposed IEC method is its weak-
ness in detecting slow moving object, which could be neglected 
in motion triggered dataset such as camera_trap. In return, 
IEC is exceptionally good at filtering out non-candidate object 
proposals, which is a crucial for accurate animal detection.

Tables II, III, and IV provides quantitative recall, precision 
and F-score comparisons on our Camera_trap dataset, respec-
tively. We compare our proposed method.



TABLE V
AVERAGE PROCESSING TIME PER IMAGE IN SECONDS

WITH VARIOUS EXPERIMENTAL CHOICES

Experimental choices

Use Selective Search
Use Iterative Graph-Cut
Run CNN feature extractor on GPU
Run CNN feature extractor on CPU
Run CNN using large batch

Proposal generation 0.75 0.75 0.75 1.03 1.03 1.03
Verification 8.94 3.68 2.92 4.19 1.01 0.54

Total 9.69 4.43 3.67 5.22 2.04 1.57

[VII. CONCLUSION

In this paper, we have successfully developed an accurate 
method for animal object detection from highly cluttered natural 
scenes captured by motion-triggered cameras, called camera-
traps. We developed a new approach to generate animal ob-
ject region proposals using multi-level graph cut in the spa-
tiotemporal domain. We then developed a cross-frame tem-
poral patch verification method to determine if these region 
proposals are true animals or background patches. We found 
that the DCNN and FV-HOG features are able to enhance the 
performance of each other during animal object verification. 
Our extensive experimental results and performance compar-
isons over a diverse set of challenging camera-trap data demon-
strated that the proposed spatiotemporal object proposal and 
patch verification framework is sensitive to objects in motion 
and confident in rejecting false alarms, thus is capable of build-
ing the basis of a robust object detection system in dynamic 
scenes.
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