

W

|

Reconstructing the Routing Topology in Dynamic

and Large Scale Networks
S.Dharani S.Kalaiyarasi

Student,Departmentof Information Technology Student,Departmentof Information Technology

M.Kumarasamy College of Engineering,Karur M.Kumarasamy College of Engineering,Karur

sridharanidgl@gmail.com kalaiyarasi.kssakthivel@gmail.com

V.Jeevitha K.Megala

Student,Departmentof Information Technology Student,Departmentof Information Technology

M.Kumarasamy College of Engineering,Karur M.Kumarasamy College of Engineering,Karur

jeevithamkce@gmail.com megalak22@gmail.com

Abstract— In wireless sensor networks(WSNs), sensor nodes

are usually self-organized, delivering data to a central sink in a
multi-hop manner. Reconstructing the per-packet routing path
enables fine-grained diagnostic analysis and performance
optimizations of the network. The performances of existing path
reconstruction approaches, however, degrade rapidly in large
scale networks with lossy links. This paper presents Pathfinder, a
robust path reconstruction method against packet losses as well
as routing dynamics. At the node side, Pathfinder exploits
temporal correlation between a set of packet paths and efficiently
compresses the path information using path difference. At the
sink side, Pathfinder infers packet paths from the compressed
information and employs intelligent path speculation to
reconstruct the packet paths with high reconstruction ratio. We
propose an analytical model to analyze the performance of
Pathfinder. We further compared Pathfinder with two most
related approaches using traces from a large scale deployment
and extensive simulations. Results show that Pathfinder
outperforms existing approaches, achieving both high
reconstruction ratio and low transmission cost.

Index Terms—Measurement, path reconstruction, wireless

sensor networks.

I. INTRODUCTION

IRELESS sensor networks (WSNs) can be applied

in many application scenarios, e.g., structural pro-

tection [1], ecosystem management [2], and urban CO

monitoring [3]. In a typical WSN, a number of self-organized

sensor nodes report the sensing data periodically to a central

sink via multihop wireless.

Reconstructing the routing path of each received packet at the

sink side is an effective way to understand the network's

complex internal behaviors [7], [8]. With the routing path of

each packet, many measurement and diagnostic approaches [9]–

[13] are able to conduct effective management and protocol

optimizations for deployed WSNs consisting of a large

number of unattended sensor nodes. For example, PAD [10]

depends on the routing path information to build a Bayesian

network for inferring the root causes of abnormal phenomena.

Path information is also important for a network manager to

effectively manage a sensor network.For example, most

existing delay and loss measurement approaches [9], [14]

assume that the routing topology is given as a priori. The

time-varying routing topology can be effectively obtained by

per-packet routing path, significantly improving the values of

existing WSN delay and loss tomography approaches.

Fig. 1. Example to illustrate the basic idea of iPath.

 In this paper, we propose iPath, a novel path inference ap-

 proach to reconstruct routing paths at the sink side. Based on a

 real-world complex urban sensing network with all node gener-

 ating local packets, we find a key observation: It is highly prob-

 able that a packet from node i and one of the packets from i's

 parent will follow the same path starting from i's parent toward

 the sink. We refer to this observation as high path similarity.

 Fig. 1 shows a simple example where S is the sink node. a1 de-

 notes a packet from A, and b1 ,b2, b3 denotes packets from B(A's

 parent). High path similarity states that it is highly probable that

 a1 will follow the same path (i.e., path a1 - A , which means

 the subpath by removing node A from path a1))as one of B's

 packet, say b1 , i.e., path (a1) = (A, path (b1)).

 The basic idea of iPath is to exploit high path similarity to

iteratively infer long paths from short ones. iPath starts with a

known set of paths (e.g.,the one-hop paths are already known)

and performs path inference iteratively. During each iteration,

it tries to infer paths one hop longer until no paths can be in-

ferred. In order to ensure correct inference, iPath needs to verify

whether a short path can be used for inferring a long path. For

this purpose, iPath includes a novel design of a lightweight hash

function. Each data packet attaches a hash value that is updated

hop by hop. This recorded hash value is compared against the

calculated hash value of an inferred path. If these two values

match, the path is correctly inferred with a very high probability.

In order to further improve the inference capability as well as

its execution efficiency, iPath includes a fast bootstrapping al-

gorithm to reconstruct a known set of paths.

 iPath achieves a much higher reconstruction ratio in net-

works with relatively low packet delivery ratio and high routing

dynamics.

The contributions of this work are the following.

• We observe high path similarity in a real-world sensor net-

work. Based on this observation, we propose an iterative

boosting algorithm for efficient path inference. We propose

a lightweight hash function for efficient verification within

iPath. We further propose a fast bootstrapping algorithm

to improve the inference capability as well as its execution

efficiency.

• We propose an analytical model to calculate the successful

reconstruction probability in various network conditions

mailto:sridharanidgl@gmail.com
mailto:jeevithamkce@gmail.com

such as network scale, routing dynamics, packet losses, and

node density.

• We implement iPath and evaluate its performance using

traces from large-scale WSN deployments as well as ex-

tensive simulations. iPath achieves higher reconstruction

ratio under different network settings compared to states

of the art.

The rest of this paper is organized as follows. Section II dis-

cusses the related works. Section III gives the results of a

measurement study on two deployed networks. Section IV de-

scribes the network model and assumptions made in this paper.

Section V describes the design of iPath. Section VI formally an-

alyzes the reconstruction performance of iPath and two related

works. Section VII evaluates iPath's performance compared

to existing works in a trace-driven study. Section VIII re-

veals more system insights by extensive simulations, and

Section IX concludes this paper.

II. RELATED WORK

 In wired IP networks, fine-grained network measurement

includes many aspects such as routing path reconstruction,

packet delay estimation, and packet loss tomography. In

these works, probes are used for measurement purpose

[15]–[18]. Traceroute is a typical network diagnostic tool for

displaying the path multiple probes. DTrack [18] is a

probe-based path tracking system that predicts and tracks

Internet path changes. According to the prediction of path

changes, DTrack is able to track path changes effectively.

FineComb [15] is a recent probe-based net- work delay and

loss topography approach that focuses on resolving packet

reordering. In fact, a recent work [19] summarizes the

design space of probing algorithms for network per-

formance measurement. Using probes, however, is usually

not desirable in WSNs. The main reason is that the wireless

dynamic is hard to be captured by a small number of probes,

and frequent probing will introduce high energy

consumption.

 A recent work [20] investigates the problem of

identifying per-hop metrics from end-to-end path

measurements, under the assumption that link metrics are

additive and constant. Without using any active probe, it

constructs a linear system by the end- to-end measurements

from a number of internal monitors. Path information is

assumed to exist as prior knowledge to build the linear

system. Therefore, this work is orthogonal to iPath, and

combining them may lead to new measurement techniques

in WSNs.

 There are several recent path reconstruction approaches

for WSNs [7], [8], [10], [21]. PAD is a diagnostic tool that

includes a packet marking scheme to obtain the network

topology. PAD [10] assumes a relatively static network and

uses each packet to carry one hop of a path. When the

network becomes dynamic, the frequently changing routing

path cannot be accurately reconstructed. MNT [8] first

obtains a set of reliable packets from the received packets at

sink, then uses the reliable packet set to reconstruct each

received packet's path. When the network is not very dynamic

and the packet delivery ratio is high, MNT is able to achieve

high reconstruction ratio with high reconstruction ac- curacy.

However, as described in Section V-C, MNT is vulner- able

to packet loss and wireless dynamics. PathZip [7] hashes the

routing path into an 8-B hash value in each packet. Then, the

sink performs an exhaustive search over the neighboring

nodes for a match. The problem of PathZip is that the search

space grows rapidly when the network scales up. Pathfinder

[21] assumes that all nodes generate local packets and have a

common interpacket interval (i.e., IPI). Pathfinder uses the

temporal correlation between multiple packet paths and

efficiently compresses the path information into each packet.

Then, at the PC side, it can infer packet paths from the

compressed informa- tion. Compared to PathZip, iPath

exploits high path similarity between multiple packets for fast

inference, resulting in much better scalability. Compared to

MNT, iPath has much less stringent requirements on

successful path inference: In each hop, iPath only requires at

least one local packet following the same path, while MNT

requires a set of consecutive packets with the same parent

(called reliable packets). Compared to Pathfinder, iPath does

not assume common IPI. iPath achieves higher reconstruction

ratio accuracy in various network conditions by exploiting

path similarity among paths with different lengths.

III. MEASUREMENT STUDY

In order to quantify the path similarity in real-world de-

ployment, we conduct a measurement study on two deployed

networks—CitySee [3] and GreenOrbs [2]. The CitySee project

is deployed in an urban area for measuring carbon emission.

All nodes are organized in four subnets. Each subnet has one

sink node, and sink nodes communicate to the base station

through 802.11 wireless links. We collect traces from one

sink of a subnet with 297 nodes. The GreenOrbs project in-

cludes 383 nodes in an forest area for measuring the carbon

absorbance.

These two networks use the Collection Tree Protocol [4] as

its routing protocol. In order to reduce the energy consumption

and prolong the network lifetime, all nodes except the sink node

Fig. 2. Path similarity and routing dynamics in two large-scale deployed sensor
networks. (a) Dynamic of CitySee. (b) Dynamic of GreenOrbs. (c) Similarity of
CitySee. (d) Similarity of GreenOrbs.

work at low-power listening states. The wakeup interval of the

low power setting is 512 ms. Each node reports data packets

to a sink with a period of 10 min. Each data packet carries the

routing path information directly for offline analysis.

We first look at the routing dynamics of the networks. We

measure a quantity that is defined to be the average number

of periods (i.e., local packets) between two parent changes by a

node. It is simply the inverse of the number of parent changes

per period at a node. A smaller means more frequent parent

changes. Fig. 2(a) and (b) shows the cumulative distribution

function (CDF) of for all nodes in the two networks. We can

see that these two network have different degrees of routing

dynamics. On average, there is a parent change every 46.9 pe-

riods in CitySee and 89.1 periods in GreenOrbs. As a compar-

ison, the MNT paper [8] reports a parent change every

 periods of the networks tested, which have less frequent

parent changes. We see that CitySee and GreenOrbs have high

routing dynamics, making per-packet path inference necessary

for reasoning about complex routing behaviors.

On the other hand, we observe high path similarity in the

networks, i.e., it is highly probable that a packet from node

and one of the packets from 's parent will follow the same path

starting from 's parent toward the sink. To quantitatively mea-

sure path similarity, we define such that among all

packets with path length , there are ratio of packets

that follow the same path as at least one hop packet.

Fig. 2(c) and (d) shows the values with varying .

We see that the values of are close to 1, indicating

that a high path similarity in both the CitySee network and

GreenOrbs network. Note that the paths shown in these two fig-

ures include more than 99% of the total packet paths in these two

traces. Therefore, the path similarity observation is not biased.

The above results show that although there are severe

routing dynamics, the path similarity can still be very high.

This key observation gives us important implications for

efficient path inference: If a similar short path is known, it

can be used to reconstruct a long path efficiently.

IV.NETWORK MODEL

In this section, we summarize the assumptions made and

data fields in each packet.

We assume a multihop WSN with a number of sensor

nodes. Each node generates and forwards data packets to a

single sink. In multisink scenarios, there exist multiple

routing topologies. The path reconstruction can be

accomplished separately based on the packets collected at

each sink.

In each packet , there are several data fields related to iPath.

We summarize them as follows.

• The first two hops of the routing path, origin

and parent . Including the parent information in

each packet is common best practice in many real

applications for different purposes like network topology

generation or passive neighbor discovery [8], [22].

• The path length . It is included in the packet

header in many protocols like CTP [4]. With the path

length, iPath is able to filter out many irrelevant packets

during the iter- ative boosting (Section V-A).

• A hash value of packet 's routing path. It can

make the sink be able to verify whether a short path and

a long path are similar. The hash value is calculated on the

nodes along the routing path by the PSP-Hashing (Section

V-B).

• The global packet generation time and a parent

change counter . These two fields are not required in

iPath. However, with this information, iPath can use a fast

bootstrapping algorithm (Section V-C) to speed up the

reconstruction process as well as reconstruct more paths.

V. IPATH DESIGN

The design of iPath includes three parts: iterative boosting,

PSP-Hashing, and fast bootstrapping. The iterative boosting al-

gorithm is the main part of iPath. It uses the short paths to re-

construct long paths iteratively based on the path similarity.

PSP-Hashing provides a path similarity preserving hash func-

tion that makes the iterative boosting algorithm be able to verify

whether two paths are similar with high accuracy. When the

global generation time and the parent change counter are in-

cluded in each packet, a fast bootstrapping method is further

used to speed up the iterative boosting algorithm as well as to

reconstruct more paths.

Algorithm 1:The iterative boosting algorithm

Input:An initial set of packet whose paths have been

reconstructed and a set of other packets

Output: The routing paths of packets

 1: Procedure ITERATIVE-BOOSTING

2:

3: while do

4:

5: for each packetk in do

6: for each packet in do

7: =RECOVER(,)

8: if then

9:

10:

11:

12: procedure RECOVER

13: if then

14: returnFalse

15: if

16: if then

17: //Case2

18: returnTrue

19: returnFalse

20: if then

21: if

22: //Case1

23: returnTrue

24: if then

25: //Case3

26: returnTrue

27: returnFalse

A. Iterative Boosting

 iPath reconstructs unknown long paths from known

short paths iteratively. By comparing the recorded hash value

and the calculated hash value, the sink can verify whether a

long path and a short path share the same path after the short

path's original node. When the sink finds a match, the long

path can be reconstructed by combining its original node and

the short path.

 Algorithm 1 gives the complete iterative boosting al-

gorithm. There are two procedures, the Iterative-Boosting

procedure (line 1) and the Recover procedure (line 12). The

Iterative-Boosting procedure includes the main logic of the

algorithm that tries to reconstruct as many as possible packets

iteratively. The input is an initial set of packets Pinit whose

paths have been reconstructed and a set of other packets Px .

During each iteration, Pn is a set of newly reconstructed packet

paths. The algorithm tries to use each packet in Px to recon-

struct each packet's path in Px (lines 5~10). The procedure

ends when no new paths can be reconstructed (line 3).
The Recover procedure tries to reconstruct a long path with the

help of a short path. Based on the high path similarity obser-

vation, the following cases describe how to reconstruct a long

path.

 Case 1 (Lines 21 23): The sink uses the hash value in

packet with length and packet with length (len+1)

to verify whether the path of k is similar with i 's path. The

verification is simply to check whether hash(o(i), path(k))

equals (line 21). If the verification passes, packet 's path

is reconstructed as (,). Fig. 3 shows an example: A

packet with path (C, D, E) can reconstruct a packet's path that

is(Y, C, D,E).

Fig. 3. Example to illustrate three cases of reconstructing long paths based
on short paths in the iterative boosting algorithm. X, Y, etc., are nodes, and
x1, y1, etc., are packets originated from different nodes.

In practice, the first hop receiver (i.e., parent) node is also

included in each packet. With this parent information in each

packet, for a reconstructed path of packet k with length len in

Pnew , it can help reconstruct more paths with length (len+1)

and (len+2). Specifically, there are two additional cases to

reconstruct long paths.

Case 2 (Lines 15 ~ 19): The second case is similar with the

first one. Since packet carries its first two hops o(k) and p(k),

the sink can reconstruct path with length (len+2). The sink

checks whether hash(o(i),p(i),path(k)) equals h(i) (line 16).

If the verification passes, packet i 's path is (o(i), p(i), path(k).

For example, a packet with path (C, D, E) can reconstruct a

packet's path that is (X, Y, C, D, E).

Case 3 (Lines 24 ~ 26): The third case is to verify whether

hash (o(i), p(i), path(k)- o(k))) equals h(i) (line 24). We use

(path(k)-o(k)) to denote the path of packet without its origin

node o(k)). If the verification passes, packet i 's path is (o(i),

 p(i), path(k)-o(k)). For example, a packet with path (C, D,

 E) can reconstruct a packet's path that is (X, Y, D, E).

 Since all the three cases require the difference of the two

 packets' path lengths to be one or two, the procedure can return

 false immediately if this constraint does not hold (lines 13

 and 14). Then, the three cases try to reconstruct the long path

 (lines 15~27). The Recover procedure outputs the reconstructed

 path if one of the three cases successfully finds a match (lines

 16, 21, and 24).

 When the input trace is relatively large, iPath

divides the trace into multiple time-windows. When a trace

with packets is divided into windows evenly, the worst-

case time complexity of the algorithm is . Details

about the time complexity analysis can be found in the

technical report [23] of this work. Note that this time

complexity represents the number of procedure Recover

executed in Algorithm 1. The overall time consumption also

depends on the time complexity of the hash function.

 In order to make the iterative boosting efficient and

 effective, two problems need to be addressed. The first is

how to design a lightweight hash function that can be

calculated efficiently on each sensor node. iPath uses PSP-

Hashing, a novel light- weight path similarity preserving

hash function, to make the sink be able to verify two similar

paths efficiently (Section V-B). Second, each iteration of the

iterative boosting needs a set of reconstructed paths.

Therefore, how to obtain the initial set of paths is important.

The basic initial set is all paths with length

one and two since these paths can be directly reconstructed by

its origin and parent. iPath further uses a fast bootstrapping al-

gorithm to obtain a larger initial set (Section V-C).

Fig. 4. PSP-Hashing function. Each node in the routing path takes three inputs
and updates the hash value in packet . Note that we use to denote
the hash value in packet at the th hop, instead of a function defined on packet

 K itself.

B. PSP-Hashing

As mentioned in the iterative boosting algorithm, the PSP-

Hashing (i.e., path similarity preserving) plays a key role to

make the sink be able to verify whether a short path is similar

with another long path. There are three requirements of the hash

function.

• The hash function should be lightweight and efficient

enough since it needs to be run on resource-constrained

sensor nodes.

• The hash function should be order-sensitive. That is,

hash(A, B) and hash(B, A) should not be the same.

• The collision probability should be sufficiently low to in-

crease the reconstruction accuracy.

 Traditional hash functions like SHA-1 are order-sensitive.

 However, they are not desirable due to their high computational

 and memory overhead. For example, an implementation [24] of

 SHA-1 on a typical sensor node TelosB takes more than 4 kB

 program flash and longer than 5 ms to hash 20 B of data. Note

that this me. However, they are not desirable due to their high

computational and memory overhead is about 10% of the total

program flash of a TelosB node, and 5 ms computational

overhead nearly doubles the forwarding delay in a typical routing

protocol [4]. In order to design an efficient and light weight

hash function, efficient operations, such as bitwise XOR

operation, are preferred. Since XOR operation is not order-

sensitive, the order information should be explicitly hashed
into the hash value.

 We propose PSP-Hashing, a lightweight path similarity

preserving hash function to hash the routing path of each

packet. PSP-Hashing takes a sequence of node ids as input and

outputs a hash value. Each node along the routing path calculates

a hash value by three pieces of data. One is the hash value in the

packet that is the hash result of the subpath before the current

node. The other two are the current node id and the previous

node id. The previous node id in the routing path can be easily

obtained from the packet header. Fig. 4 shows this chained hash

function along the routing path.

 The following equation describes the calculation of each

step of PSP-Hashing:

 if

 |f(ni)-f(ni-1)|, if > 1

 (1)

where is the node id of the th node of packet 's routing

path and is a mapping function that maps the node id to a

number with the same length as the hash value. The following

equation gives a simple mapping function with input node id A:

 (2)

where α is a prime number larger than 2m and m is the number

of bits of the hash value that is configured as 32. In practice, 4 B

hash value is sufficient to achieve high reconstruction accuracy.

In Section VIII, we will further show the impact of different

lengths of the hash value.

For example, the hash value of a path (A, B, C) can be cal-

culated as follows. 1) At the origin node A, the hash value is

 . 2) At node B, the hash value becomes.

 3) At node C,the final hash value is

PSP-Hashing has several good features.

1)On each node along the routing path, the calculation is

simple and can be executed very efficiently. As is given in (1),

each node only needs to do several bit operations and

arithmetic operations. On TelosB sensor node, the compu-

tational overhead of PSP-Hashing is negligible (<1 µs) . The

memory overhead of the PSP-Hashing is less than 10 B.

 2) Another good feature is that PSP-Hashing is an order - sen-

 sitive hash function. That is, is dif-

ferent with . In practice, paths are

to have different orders with the same nodes due to parent

changes. Therefore, this feature is important to achieve

 low error ratio. For example, assume

 equals to . When the sink has recon-

 structed the path and tries to reconstruct another

 path that is actually , it will find that

 equals since

 equals . Then,

 the sink reconstructs to be , which is

 not correct. Since PSP - Hashing is order-sensitive, it

 can exclude the above error case and improve the accuracy of

 iPath.

 C. Fast Bootstrapping

The iterative boosting algorithm needs an initial set of

reconstructed paths. In addition to the one/two-hop paths, the

fast bootstrapping algorithm further provides more initial

recon- structed paths for the iterative boosting algorithm.

These initial reconstructed paths reduce the number of

iterations needed and speed up the iterative boosting

algorithm.

The fast bootstrapping algorithm needs two additional data

fields in each packet , parent change counter and global

packet generation time . The parent change counter

records the accumulated number of parent changes, and the

global packet generation time can be estimated by attaching an

accumulated delay in each packet [12]. For packet , there are

an upper bound and a lower bound of the difference

between the estimated packet generation time and the

real value .
 The basic idea is to reconstruct a packet's path by the help of

 the local packets at each hop. For each node, we can obtain its

stable periods by the parent change counter attached in each of

Algorithm 2: The fast bootstrapping algorithm

Input: All received packets and a packet k whose path is being

reconstructed

Output: : the routing path of packet

 1: procedure FAST-BOOTSTRAPPING

2:

3:

4:

5:

6:

7:

8:

9:

 10: break

its local packet. A stable period of a node is a period of time in

which the node does not change its parent. If a packet is for-

warded by this node in one of its stable periods, we can safely re-

construct the next-hop of that forwarded packet to be the parent of

its local packet in the same stable period.

VI. ANALYSIS

 In order to quantify the reconstruction performance of iPath

and two related approaches, we analyze these approaches by a

novel analytical model. Here, the performance means the prob-

ability of a successful reconstruction, which is the most impor-

tant metric. We use the following definitions for analysis.

a. Local packet generation period t . iPath does not

require all nodes have the same local packet generation

period. In order to simplify the presentation, we assume

11:

12:

 13: return

(,)

while do

for all

for all

if or or then

all nodes have the same packet generation period in this

analysis section.

b. Routing dynamics δ , which is the number of parent

changes in a single period t. On average, there is

one parent change every λ =1/δlocal packets. We call

these λ consecutive periods as one cycle for analysis.

c. Packet delivery ratio PDR of packet k. It can be

calculated as the product of the packet reception ratios

(PRR) along the routing path of packet k,

.
d. The average node degree .

e. As mentioned in the fast bootstrapping algorithm, a

stable period of a node is a period in which the node

does not change parent.

A. Performance of MNT

 MNT [8] reconstructs the whole path hop by hop. Since there

is no parent change within a number of consecutive stable

periods, we can calculate the probability of a successful

recon- struction by the product of the ratios of stable periods

on all forwarding nodes. The following equation describes the

probability of a successful reconstruction of MNT:

 (3)

Where SMNT(j) is the ratio of stable periods of node j. Then, we

calculate by dividing the expected number of stable periods

in one cycle by the total periods λ in one cycle

 B. Performance of iPath

The fast bootstrapping algorithm reconstructs an initial set of paths

for the iterative boosting algorithm. Therefore, we first analyze the

 performance of the fast bootstrapping algorithm.

 1) Performance of Fast Bootstrapping: The fast

bootstrap-

 ping algorithm reconstructs the routing path of a packet hop

by

 hop. When the sink reconstructs the path of a packet to a

for- warder F, it can reconstruct the next-hop only when the

packet is in one of Fs stable periods. Therefore, the probability

of a is successful reconstruction of the fast bootstrapping

algorithm the product of the ratios of stable periods on all

forwarding

nodes

 (5)

where S(j) is the ratio of stable periods of node j. Then, we need

to model the ratio of stable periods S(j).

VII.CONCLUSION

In this paper, we propose iPath, a novel path inference

approach to reconstructing the routing path for each received

packet. iPath exploits the path similarity and uses the iterative

boosting algorithm to reconstruct the routing path effectively.

Furthermore, the fast bootstrapping algorithm provides an

initial set of paths for the iterative algorithm. We formally

analyze the reconstruction performance of iPath as well as

two related approaches. The analysis results show that iPath

achieves higher reconstruction ratio when the network setting

varies. We also implement iPath and evaluate its performance

by a trace-driven study and extensive simulations. Compared

to states of the art, iPath achieves much higher reconstruction

ratio under different network settings.

REFERENCES

[1] M. Ceriotti et al., “Monitoring heritage buildings with wireless sensor
networks: The Torre Aquila deployment,” in Proc. IPSN, 2009, pp.
277–288.

[2] L. Mo et al., “Canopy closure estimates with GreenOrbs: Sustainable
sensing in the forest,” in Proc. SenSys, 2009, pp. 99–112.

[3] X. Mao et al., “CitySee: Urban CO2 monitoring with sensors,” in Proc.
IEEE INFOCOM, 2012, pp. 1611–1619.

[4] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collec-
tion tree protocol,” in Proc. SenSys, 2009, pp. 1–14.

[5] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” in Proc. Mo-
biCom, 2003, pp. 134–146.

[6] Z. Li, M. Li, J. Wang, and Z. Cao, “Ubiquitous data collection for
mobile users in wireless sensor networks,” in Proc. IEEE INFOCOM,
2011, pp. 2246–2254.

[7] X. Lu, D. Dong, Y. Liu, X. Liao, and L. Shanshan, “PathZip: Packet
path tracing in wireless sensor networks,” in Proc. IEEE MASS, 2012,
pp. 380–388.

[8] M. Keller, J. Beutel, and L. Thiele, “How was your journey? Uncov-
ering routing dynamics in deployed sensor networks with multi-hop
network tomography,” in Proc. SenSys, 2012, pp. 15–28.

[9] Y. Yang, Y. Xu, X. Li, and C. Chen, “A loss inference algorithm for
wireless sensor networks to improve data reliability of digital ecosys-
tems.,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2126–2137, Jun.
2011.

[10] Y. Liu, K. Liu, and M. Li, “Passive diagnosis for wireless sensor net-
works,” IEEE/ACM Trans. Netw., vol. 18, no. 4, pp. 1132–1144, Aug.
2010.

