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Abstract— In wireless sensor networks(WSNs), sensor nodes 

are usually self-organized, delivering data to a central sink in a 
multi-hop manner. Reconstructing the per-packet routing path 
enables fine-grained diagnostic analysis and performance 
optimizations of the network. The performances of existing path 
reconstruction approaches, however, degrade rapidly in large 
scale networks with lossy links. This paper presents Pathfinder, a 
robust path reconstruction method against packet losses as well 
as routing dynamics. At the node side, Pathfinder exploits 
temporal correlation between a set of packet paths and efficiently 
compresses the path information using path difference. At the 
sink side, Pathfinder infers packet paths from the compressed 
information and employs intelligent path speculation to 
reconstruct the packet paths with high reconstruction ratio. We 
propose an analytical model to analyze the performance of 
Pathfinder. We further compared Pathfinder with two most 
related approaches using traces from a large scale deployment 
and extensive simulations. Results show that Pathfinder 
outperforms existing approaches, achieving both high 
reconstruction ratio and low transmission cost. 

Index Terms—Measurement, path reconstruction, wireless 

sensor networks. 
 

I.  INTRODUCTION 

 
IRELESS  sensor  networks  (WSNs)  can  be  applied 

in  many  application  scenarios,  e.g.,  structural  pro- 

tection  [1],  ecosystem  management  [2],  and   urban   CO 

monitoring [3]. In a typical WSN, a number of self-organized 

sensor nodes report the sensing data periodically to a central 

sink via multihop wireless. 

Reconstructing the routing path of each received packet at the 

sink side is an effective way to understand the network's 

complex internal behaviors [7], [8]. With the routing path of 

each packet, many measurement and diagnostic approaches [9]–

[13] are able to conduct effective management and protocol 

optimizations for deployed WSNs consisting of a large 

number of unattended sensor nodes. For example, PAD [10] 

depends on the routing path information to build a Bayesian 

network for inferring the root causes of abnormal phenomena. 

Path information is also important for a network manager to 

effectively manage a sensor network.For example, most 

existing delay and loss measurement approaches [9], [14] 

assume that the routing topology is given as a priori. The 

time-varying routing topology can be effectively obtained by 

per-packet routing path, significantly improving the values of 

existing WSN delay and loss tomography approaches. 

          
Fig. 1.  Example to illustrate the basic idea of iPath. 

        In this paper, we  propose  iPath, a novel path inference  ap- 

   proach to reconstruct routing paths at the sink side. Based on a 

   real-world complex urban sensing network with all node gener- 

   ating local packets, we find a key observation: It is highly prob- 

   able that a packet from node i and one of the packets from  i's 

   parent will follow the same path starting from i's parent toward 

   the sink. We refer to this observation as   high  path  similarity. 

   Fig. 1 shows a simple example where S is the sink  node.  a1 de- 

   notes a packet from A, and b1 ,b2, b3 denotes packets from B(A's 

   parent). High path similarity states that it is highly probable that 

   a1 will follow the same path (i.e.,  path  a1  -  A ,  which  means 

   the  subpath  by  removing node A from path a1 ))as one of B's 

   packet, say b1 , i.e., path  (a1) = (A, path  (b1)). 

 The basic idea of iPath is to exploit high path similarity to 

iteratively infer long paths from short ones. iPath starts with a 

known set of paths (e.g.,the one-hop paths are already known) 

and performs path inference iteratively. During each iteration, 

it tries to infer paths one hop longer until no paths can be in- 

ferred. In order to ensure correct inference, iPath needs to verify 

whether a short path can be used for inferring a long path. For 

this purpose, iPath includes a novel design of a lightweight hash 

function. Each data packet attaches a hash value that is updated 

hop by hop. This recorded hash value is compared against the 

calculated hash value of an inferred path. If these two values 

match, the path is correctly inferred with a very high probability. 

In order to further improve the inference capability as well as 

its execution efficiency, iPath includes a fast bootstrapping al- 

gorithm to reconstruct a known set of paths.  

  iPath achieves a much higher reconstruction ratio in net- 

works with relatively low packet delivery ratio and high routing 

dynamics. 

The contributions of this work are the following. 

• We observe high path similarity in a real-world sensor net- 

work. Based on this observation, we propose an iterative 

boosting algorithm for efficient path inference. We propose 

a lightweight hash function for efficient verification within 

iPath. We further propose a fast bootstrapping algorithm 

to improve the inference capability as well as its execution 

efficiency. 

• We propose an analytical model to calculate the successful  

reconstruction probability in various network conditions 
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such as network scale, routing dynamics, packet losses, and 

node density. 

• We implement iPath and evaluate its performance using 

traces from large-scale WSN deployments as well as ex- 

tensive simulations. iPath achieves higher reconstruction 

ratio under different network settings compared to states 

of the art. 

The rest of this paper is organized as follows. Section II dis- 

cusses the related works. Section III gives the results of a 

measurement study on two deployed networks. Section IV de- 

scribes the network model and assumptions made in this paper. 

Section V describes the design of iPath. Section VI formally an- 

alyzes the reconstruction performance of iPath and two related 

works. Section VII evaluates iPath's performance compared 

to existing works in a trace-driven study. Section VIII re- 

veals more system insights by extensive simulations, and 

Section IX concludes this paper. 

 

II. RELATED WORK 

 

     In wired IP networks, fine-grained network measurement 

includes many aspects such as routing path reconstruction, 

packet delay estimation, and packet loss tomography. In 

these works, probes are used for measurement purpose 

[15]–[18]. Traceroute is a typical network diagnostic tool for 

displaying the path multiple probes. DTrack [18] is a 

probe-based path tracking system that predicts and tracks 

Internet path changes. According to the prediction of path 

changes, DTrack is able to track path changes effectively. 

FineComb [15] is a recent probe-based net- work delay and 

loss topography approach that focuses on resolving packet 

reordering. In fact, a recent work [19] summarizes the 

design space of probing algorithms for network per- 

formance measurement. Using probes, however, is usually 

not desirable in WSNs. The main reason is that the wireless 

dynamic is hard to be captured by a small number of probes, 

and frequent probing will introduce high energy 

consumption. 

 A recent work [20] investigates the problem of 

identifying per-hop metrics from end-to-end path 

measurements, under the assumption that link metrics are 

additive and constant. Without using any active probe, it 

constructs a linear system by the end- to-end measurements 

from a number of internal monitors. Path information is 

assumed to exist as prior knowledge to build the linear 

system. Therefore, this work is orthogonal to iPath, and 

combining them may lead to new measurement techniques 

in WSNs. 

 There are several recent path reconstruction approaches 

for WSNs [7], [8], [10], [21]. PAD is a diagnostic tool that 

includes a packet marking scheme to obtain the network 

topology. PAD [10] assumes a relatively static network and 

uses each packet to carry one hop of a path. When the 

network becomes dynamic, the frequently changing routing 

path cannot be accurately reconstructed. MNT [8] first 

obtains a set of reliable packets from the received packets at 

sink, then uses the reliable packet set to reconstruct each 

received packet's path. When the network is not very dynamic 

and the packet delivery ratio is high, MNT is able to achieve 

high reconstruction ratio with high reconstruction ac- curacy. 

However, as described in Section V-C, MNT is vulner- able 

to packet loss and wireless dynamics. PathZip [7] hashes the 

routing path into an 8-B hash value in each packet. Then, the 

sink performs an exhaustive search over the neighboring 

nodes for a match. The problem of PathZip is that the search 

space grows rapidly when the network scales up. Pathfinder 

[21] assumes that all nodes generate local packets and have a 

common interpacket interval (i.e., IPI). Pathfinder uses the 

temporal correlation between multiple packet paths and 

efficiently compresses the path information into each packet. 

Then, at the PC side, it can infer packet paths from the 

compressed informa- tion. Compared to PathZip, iPath 

exploits high path similarity between multiple packets for fast 

inference, resulting in much better scalability. Compared to 

MNT, iPath has much less stringent requirements on 

successful path inference: In each hop, iPath only requires at 

least one local packet following the same path, while MNT 

requires a set of consecutive packets with the same parent 

(called reliable packets). Compared to Pathfinder, iPath does 

not assume common IPI. iPath achieves higher reconstruction 

ratio accuracy in various network conditions by exploiting 

path similarity among paths with different lengths. 

 

III. MEASUREMENT STUDY 

 

In order to quantify the path similarity in real-world de- 

ployment, we conduct a measurement study on two deployed 

networks—CitySee [3] and GreenOrbs [2]. The CitySee project 

is deployed in an urban area for measuring carbon emission. 

All nodes are organized in four subnets. Each subnet has one 

sink node, and sink nodes communicate to the base station 

through 802.11 wireless links. We collect  traces  from  one 

sink of a subnet with 297 nodes. The GreenOrbs project in- 

cludes 383 nodes in an forest area for measuring the carbon 

absorbance. 

These two networks use the Collection Tree Protocol [4] as 

its routing protocol. In order to reduce the energy consumption 

and prolong the network lifetime, all nodes except the sink node 

 

 
 

Fig. 2. Path similarity and routing dynamics in two large-scale deployed sensor 
networks. (a) Dynamic of CitySee. (b) Dynamic of GreenOrbs. (c) Similarity of 
CitySee. (d) Similarity of GreenOrbs. 



  
 

work at low-power listening states. The wakeup interval of the 

low power setting is 512 ms. Each node reports data packets 

to a sink with a period of 10 min. Each data packet carries the 

routing path information directly for offline analysis. 

We first look at the routing dynamics of the networks. We 

measure a quantity  that is defined to be the average number 

of periods (i.e., local packets) between two parent changes by a 

node. It is simply the inverse of the number of parent changes 

per period at a node. A smaller means more frequent parent 

changes. Fig. 2(a) and (b) shows the cumulative distribution 

function (CDF) of for all nodes in the two networks. We can 

see that these  two  network  have  different  degrees  of routing 

dynamics. On average, there is a parent change every 46.9 pe- 

riods in CitySee and 89.1 periods in GreenOrbs. As a compar- 

ison, the MNT paper [8] reports a parent change every  

 periods of the networks tested, which have less frequent 

parent changes. We see that CitySee and GreenOrbs have high 

routing dynamics, making per-packet path inference necessary 

for reasoning about complex routing behaviors. 

On the other hand, we observe high path similarity in the 

networks, i.e., it is highly probable that a packet from node 

and one of the packets from  's parent will follow the same path 

starting from  's parent toward the sink. To quantitatively mea- 

sure path similarity, we define  such that among all 

packets with path length , there are   ratio of packets 

that follow the same path as at least one   hop packet. 

Fig. 2(c) and (d) shows the  values with varying . 

We see that the values of  are close to 1, indicating 

that a high path similarity in both the CitySee network and 

GreenOrbs network. Note that the paths shown in these two fig- 

ures include more than 99% of the total packet paths in these two 

traces. Therefore, the path similarity observation is not biased. 

The above results show that although there are severe 

routing dynamics, the path similarity can still be very high. 

This key observation gives us important implications for 

efficient path inference: If a similar short path is known, it 

can be used to reconstruct a long path efficiently. 

 

IV.NETWORK MODEL 

In this section, we summarize the assumptions made and 

data fields in each packet. 

We assume a multihop WSN with a number of sensor 

nodes. Each node generates and forwards data packets to a 

single sink. In multisink scenarios, there exist multiple 

routing topologies. The path reconstruction can be 

accomplished separately based on the packets collected at 

each sink. 

In each packet  , there are several data fields related to iPath. 

We summarize them as follows. 

• The first two hops of the routing path, origin   

and parent  . Including the parent information in 

each packet is common best practice in many real 

applications for different purposes like network topology 

generation or passive neighbor discovery [8], [22]. 

• The path length . It is included in the packet 

header in many protocols like CTP [4]. With the path 

length, iPath is able to filter out many irrelevant packets 

during the iter- ative boosting (Section V-A). 

• A hash value   of packet   's routing path. It can 

make the sink be able to verify whether a short path and 

a long path are similar. The hash value is calculated on the 

nodes along the routing path by the PSP-Hashing (Section 

V-B). 

• The global packet generation time    and a parent 

change counter . These two fields are not required in 

iPath. However, with this information, iPath can use a fast 

bootstrapping algorithm (Section V-C) to speed up the 

reconstruction process as well as reconstruct more paths. 
                     

V. IPATH DESIGN 

The design of iPath includes three parts: iterative boosting, 

PSP-Hashing, and fast bootstrapping. The iterative boosting al- 

gorithm is the main part of iPath. It uses the short paths to re- 

construct long paths iteratively based on the path similarity. 

PSP-Hashing provides a path similarity preserving hash func- 

tion that makes the iterative boosting algorithm be able to verify 

whether two paths are similar with high accuracy. When the 

global generation time and the parent change counter are in- 

cluded in each packet, a fast bootstrapping method is further 

used to speed up the iterative boosting algorithm as well as to 

reconstruct more paths. 

 
 

Algorithm 1:The iterative boosting algorithm 
 

 

 

Input:An initial set of packet             whose paths have been 

reconstructed and a set of other packets 

 

Output:  The routing paths of packets  

   1: Procedure ITERATIVE-BOOSTING 

2: 

3: while do 

4: 

5: for each packetk in do 

6: for each packet   in do 

7:                                 =RECOVER(, ) 

8: if  then 

9: 

10: 

11: 

12: procedure RECOVER 

13:     if then 

14: returnFalse 

15:     if 

16: if then 

17: //Case2 

18: returnTrue 

19: returnFalse 

20:     if then 

21: if 

22: //Case1 

23: returnTrue 

24: if then 

25: //Case3 

26: returnTrue 

27: returnFalse 

 
 

A. Iterative Boosting 

             iPath reconstructs unknown long paths from known  

 



  
 

short paths iteratively. By comparing the recorded hash value 

and the calculated hash value, the sink can verify whether a 

long path and a short path share the same path after the short 

path's original node. When the sink finds a match, the long 

path can be reconstructed by combining its original node and 

the short path.  

      Algorithm 1 gives the complete iterative boosting al- 

gorithm. There are two procedures, the Iterative-Boosting 

procedure (line 1) and the Recover procedure (line 12). The 

Iterative-Boosting procedure includes the main logic of the 

algorithm that tries to reconstruct as many as possible packets 

iteratively. The input is an initial set of packets  Pinit whose 

paths have been reconstructed and a set of other packets Px . 

During each iteration, Pn is a set of newly reconstructed packet 

paths. The algorithm tries to use each packet in Px to recon- 

struct each packet's path in Px (lines 5~10). The procedure 

ends when no new paths can be reconstructed (line 3). 
The Recover procedure tries to reconstruct a long path with the 

help of a short path. Based on the high path similarity obser- 

vation, the following cases describe how to reconstruct a long 

path. 

       Case 1 (Lines 21 23): The sink uses the hash value in 

packet with length  and packet    with length  (len+1) 

to verify whether the path of k is similar with  i 's path. The 

verification is simply to check whether hash(o(i), path(k) ) 

equals   (line 21). If the verification passes, packet  's path 

is reconstructed as ( , ). Fig. 3 shows an example: A 

packet with path (C, D, E) can reconstruct a packet's path that 

is(Y, C, D,E). 

 

 
 

Fig. 3. Example to illustrate three cases of reconstructing long paths based 
on short paths in the iterative boosting algorithm. X, Y, etc., are nodes, and 
x1, y1, etc., are packets originated from different nodes. 

 
In  practice,  the  first  hop  receiver  (i.e., parent)  node is also 

included in each packet. With this parent information in each 

packet, for a reconstructed path of packet k with length len in 

Pnew ,  it  can  help reconstruct more paths with length (len+1) 

and (len+2).  Specifically,  there  are  two additional cases to 

reconstruct long paths. 

Case 2 (Lines 15 ~ 19):  The  second  case is similar with the 

first one. Since packet carries its first two hops o(k) and  p(k), 

the sink can  reconstruct path  with  length  (len+2). The sink 

checks whether hash(o(i),p(i),path(k)) equals h(i)    (line 16). 

If the verification passes, packet i 's path is (o(i), p(i ), path(k). 

For example, a packet with path  (C, D, E) can  reconstruct a 

packet's path that is (X, Y, C, D, E). 

Case 3 ( Lines 24 ~ 26):  The third case is to verify whether 

hash  (o(i), p(i), path(k)- o(k))) equals h(i) (line 24). We  use 

(path(k)-o(k)) to denote the path of packet without its origin 

node o(k)). If the verification passes, packet i 's path is (o(i),  

 p(i ), path(k)-o(k) ). For example, a packet with path (C, D, 

   E) can reconstruct a packet's path that is (X, Y, D, E). 

              Since all the three cases require the difference of the two 

   packets' path lengths to be one or two, the procedure can return 

   false   immediately  if   this  constraint  does  not  hold  (lines 13 

   and 14). Then, the three  cases  try to  reconstruct  the long path 

   (lines 15~27). The Recover procedure outputs the reconstructed 

   path if  one of the three cases successfully  finds a match  (lines    

   16, 21, and 24). 

        When the input trace is relatively large, iPath 

divides the trace into multiple time-windows. When a trace 

with   packets   is divided into  windows evenly, the worst-

case time complexity of the algorithm is . Details 

about the time complexity analysis can be found in the 

technical report [23] of this work. Note that this time 

complexity represents the number of procedure Recover 

executed in Algorithm 1. The overall time consumption also 

depends on the time complexity of the hash function. 

                In  order  to  make  the  iterative   boosting  efficient  and 

    effective, two problems need to be addressed. The first is 

how to design a lightweight hash function that can be 

calculated efficiently on each sensor node. iPath uses PSP-

Hashing, a novel light- weight path similarity preserving 

hash function, to make the sink be able to verify two similar 

paths efficiently (Section V-B). Second, each iteration of the 

iterative boosting needs a set of reconstructed paths. 

Therefore, how to obtain the initial set of paths is important. 

The basic initial set is all paths with length 

one and two since these paths can be directly reconstructed by 

its origin and parent. iPath further uses a fast bootstrapping al- 

gorithm to obtain a larger initial set (Section V-C). 

 

 
 

Fig. 4. PSP-Hashing function. Each node in the routing path takes three inputs 
and updates the hash value in packet   . Note that we use  to denote 
the hash value in packet   at the  th hop, instead of a function defined on packet 

   K itself. 

 
B. PSP-Hashing 

As mentioned in the iterative boosting algorithm, the PSP- 

Hashing (i.e., path similarity preserving) plays a key role to 

make the sink be able to verify whether a short path is similar 

with another long path. There are three requirements of the hash 

function. 

• The hash function should be lightweight and efficient 

enough since it needs to be run on resource-constrained 

sensor nodes. 

• The hash function should be order-sensitive. That is, 

hash(A, B) and hash(B, A) should not be the same. 

• The collision probability should be sufficiently low to in- 

crease the reconstruction accuracy. 

       Traditional hash functions like SHA-1 are order-sensitive.  

  However, they are not desirable due to their high computational 

   and memory overhead. For example, an implementation [24] of 

   SHA-1 on a typical sensor node TelosB takes more than 4 kB 

   program flash and longer than 5 ms to hash 20 B of data. Note 



  
 

that this me. However, they are not desirable due to their high 

computational and memory overhead is about 10% of the total 

program   flash   of   a  TelosB   node,   and   5  ms   computational 

overhead  nearly doubles the forwarding delay in a typical routing   

protocol [4].  In order to design  an efficient and  light   weight 

hash   function,  efficient  operations,  such  as  bitwise    XOR  

operation,  are  preferred.  Since  XOR operation is not  order- 

sensitive, the order  information  should  be  explicitly  hashed    
into the hash value. 

             We propose PSP-Hashing, a lightweight path similarity 

preserving hash function to hash the routing path of each 

packet. PSP-Hashing takes a sequence of node ids as input and 

outputs a hash value. Each node along the routing path calculates 

a hash value by three pieces of data. One is the hash value in the 

packet that is the hash result of the subpath before the current 

node. The other two are the current node id and the previous 

node id. The previous node id in the routing path can be easily 

obtained from the packet header. Fig. 4 shows this chained hash 

function along the routing path. 

        The following equation describes the calculation of each 

step of PSP-Hashing: 

                                                                                              if 

                                                      |f(ni)-f(ni-1)|,                 if   > 1 

                                                                                              (1) 

where is the node id of the  th node of packet   's routing 

path and  is a mapping function that maps the node id to a 

number with the same length as the hash value. The following 

equation gives a simple mapping function with input node id A: 

 

                                    (2) 
 
where α is a prime number larger than 2m and  m  is the number 

of bits of the hash value that is configured as 32. In practice, 4 B 

hash value is sufficient to achieve high reconstruction accuracy. 

In Section VIII, we will further show the impact of different 

lengths of the hash value. 

For example, the hash value of a path (A, B, C) can be cal- 

culated as follows. 1) At the origin node A, the hash value is                  

          . 2) At node B, the hash value becomes.  

                         3) At node C,the final hash value is                                        

                                                          
PSP-Hashing has several good features. 

1)On each node along the routing path, the calculation is 

simple and can be executed very efficiently. As is given in (1), 

each node only needs to do several bit operations and 

arithmetic operations. On TelosB sensor node, the compu- 

tational overhead of PSP-Hashing is negligible (<1 µs) . The 

memory overhead of the PSP-Hashing is less than 10 B. 

 2) Another good feature is that PSP-Hashing is an order - sen- 

 sitive hash function. That is,                                          is   dif-     

ferent with . In practice,   paths    are    

to have different orders with the same nodes due to   parent    

changes.  Therefore, this feature  is  important  to  achieve 

 low error ratio. For example, assume 

 equals to         . When the sink  has  recon- 

 structed the path  and  tries  to  reconstruct  another 

 path                that is actually                 , it  will  find  that   

                                       equals        since 

                                     equals                                              .  Then, 

  the sink reconstructs      to be                           , which is   

  not  correct.  Since PSP - Hashing  is  order-sensitive,  it    

  can exclude the above error case and improve the accuracy of      

 iPath. 

 

   C. Fast Bootstrapping 

The iterative boosting algorithm needs an initial set of 

reconstructed paths. In addition to the one/two-hop paths, the 

fast bootstrapping algorithm further provides more initial 

recon- structed paths for the iterative boosting algorithm. 

These initial reconstructed paths reduce the number of 

iterations needed and speed up the iterative boosting 

algorithm. 

The fast bootstrapping algorithm needs two additional data 

fields in each packet  , parent change counter  and global 

packet  generation  time  . The parent change counter 

records the accumulated number of parent changes, and the 

global packet generation time can be estimated by attaching an 

accumulated delay in each packet [12]. For packet , there are 

an upper bound   and a lower bound   of the difference 

between the estimated packet generation time and the 

real value . 
       The basic idea is to reconstruct a packet's path by the help of      

  the local packets at each hop. For each node, we can obtain its 

stable periods by the parent change counter attached in each of 
 

Algorithm 2: The fast bootstrapping algorithm 
 

 

 
Input: All received packets and a packet  k whose path is being 

reconstructed 

Output: : the routing path of packet 

   1: procedure FAST-BOOTSTRAPPING 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

 10: break 
 

 
 
 

its local packet. A stable period of a node is a period of time in 

which the node does not change its parent. If a packet is for- 

warded by this node in one of its stable periods, we can safely re- 

construct the next-hop of that forwarded packet to be the parent of 

its local packet in the same stable period. 

 

VI. ANALYSIS 

 

    In order to quantify the reconstruction performance of iPath 

and two related approaches, we analyze these approaches by a 

novel analytical model. Here, the performance means the prob- 

ability of a successful reconstruction, which is the most impor- 

tant metric. We use the following definitions for analysis. 

a. Local packet generation period t . iPath does not 

require all nodes have the same local packet generation 

period. In order to simplify the presentation, we assume 

11: 

12: 

 13: return 

( , ) 

while do 

for all 

 
for all 

if or or then 



  
 

all nodes have the same packet generation period in this 

analysis section. 

b. Routing dynamics δ , which is the number of parent 

changes in a single period t. On average, there is 

one parent change every λ =1/δlocal packets. We call 

these λ consecutive periods as one cycle for analysis. 

c. Packet delivery ratio PDR of packet k. It can be 

calculated as the product of the packet reception ratios 

(PRR) along the routing path of packet k, 

. 
d. The average node degree   . 

e. As mentioned in the fast bootstrapping algorithm, a 

stable period of a node is a period in which the node 

does not change parent. 

A. Performance of MNT 

      MNT [8] reconstructs the whole path hop by hop. Since there 

is no parent change within a number of consecutive stable 

periods, we can calculate the probability of a successful 

recon- struction by the product of the ratios of stable periods 

on all forwarding nodes. The following equation describes the 

probability of a successful reconstruction of MNT: 

 

 

 

                                                                                        (3) 
 

 

Where SMNT(j) is the ratio of stable periods of node j. Then, we 

calculate by dividing the expected number of stable periods 

in one cycle by the total periods λ in one cycle 
 
   B. Performance of iPath 
 
The fast bootstrapping algorithm reconstructs an initial set of paths   

for the iterative boosting algorithm. Therefore, we first analyze the  

   performance of the fast bootstrapping algorithm. 

      1) Performance of Fast Bootstrapping: The fast 

bootstrap- 

   ping algorithm reconstructs the routing path of a packet hop 

by 

   hop. When the  sink  reconstructs  the  path of a packet to a  

for- warder F, it can reconstruct the next-hop only when the 

packet is  in one of Fs stable periods. Therefore, the probability 

of a is successful  reconstruction  of  the fast  bootstrapping 

algorithm  the  product  of  the  ratios  of  stable  periods on all  

forwarding  

nodes 

 

                                        (5) 

where S(j) is the ratio of stable periods of node j. Then, we  need 

to model the ratio of stable periods S(j).  

 

VII.CONCLUSION 

In this paper, we propose iPath, a novel path inference 

approach to reconstructing the routing path for each received 

packet. iPath exploits the path similarity and uses the iterative 

boosting algorithm to reconstruct the routing path effectively. 

Furthermore, the fast bootstrapping algorithm provides an 

initial set of paths for the iterative algorithm. We formally 

analyze the reconstruction performance of iPath  as  well  as 

two related approaches. The analysis results show that iPath 

achieves higher reconstruction ratio when the network setting 

varies. We also implement iPath and evaluate its performance 

by a trace-driven study and extensive simulations. Compared 

to states of the art, iPath achieves much higher reconstruction 

ratio under different network settings. 
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