
MIDDLEWARE APPLICATIONS IN IOT
P.Eswari1 and S.Balaji2

1IInd M.E CSE- Parisutham Institute of Technology and Science, Thanjavur.
 2 Assistant Professor - Parisutham Institute of Technology and Science, Thanjavur.

 E-mail id – eswariselvam94@gmail.com,balagicse@gmail.com

Abstract— The Internet-of-Things (IoT)

envisages a future in which digital and physical

things or objects (e.g., smartphones, TVs, cars)

can be connected by means of suitable information

and communication technologies, to enable a

range of applications and services. The IoT’s

characteristics, including an ultra large-scale

network of things, device and network level

heterogeneity, and large numbers of events

generated spontaneously by these things, will

make development of the diverse applications and

services a very challenging task. In general,

middleware can ease a development process by

integrating heterogeneous computing and

communications devices, and supporting

interoperability within the diverse applications

and services. Recently, there have been a number

of proposals for IoT middleware. These proposals

mostly addressed Wireless Sensor Networks

(WSNs), a key component of IoT, but do not

consider Radio-Frequency IDentification (RFID),

Machine-to-Machine (M2M) communica-tions,

and Supervisory Control and Data Acquisition

(SCADA), other three core elements in the IoT

vision. In this article, we outline a set of

requirements for IoT middleware, and present a

comprehensive review of the existing middleware

solutions against those requirements. In addition,

open research issues, challenges and future

research directions are highlighted.

Index Terms--WSNs,RFID,MSM communication,

SCADA, IoT characteristics, Middleware

Requirements.

ACRONYMS

IoT Internet of Things

M2M
Machine-to-Machine

communications

RFID Radio Frequency IDentification

SCADA
Supervisory Control and Data

Acquisition

VM Virtual Machine

WSN Wireless Sensor Neywork

I. INTRODUCTION

With the advance of numerous technologies

including sensors, actuators, embedded

computing and cloud computing, and the

emergence of a new generation of cheaper,

smaller wireless devices, many objects or things

in our daily lives are becoming wirelessly

interoperable with attached miniature and low-

powered or passive wireless devices (e.g.,

passive RFID tags). The Wireless World

Research Forum predicts that by 2017, there will

be 7 trillion wireless devices serving 7 billion

people [1] (i.e., one thousand devices per

person). This ultra large number of connected

things or devices will form the IoT [2], [3].

By enabling easy access of, and interaction

with, a wide variety of physical devices or things

such as, home appliances, surveillance cameras,

monitoring sensors, actuators, displays, vehicles,

machines and so on, the IoT will foster the

development of applications in many different

domains, such as home automation, industrial

automation, medical aids, mobile healthcare,

elderly assistance, intelligent energy

management and smart grids, automotive, traffic

management, and many others [4]. These

applications will make use of the potentially

enormous amount and variety of data generated

by such objects to provide new services to

citizens, companies, and public administrations

[3], [5]–[8].

In a ubiquitous computing environment like

IoT, it is impractical to impose standards and

make everyone comply. An ultra large-scale

network of things and the large number of events

that can be generated spontaneously by these

things, along heterogeneous

devices/technologies/applications of IoT bring

new challenges in developing applications, and

make the existing challenges in ubiquitous

computing considerably more difficult [2], [3].

In this context, a middleware can offer common

services for applications and ease application

development by integrating heterogeneous

computing and communications devices, and

supporting interoperability within the diverse

applications and services running on these

devices. A number of operating systems have

been developed [9]–[10] to support the

development of IoT middleware solutions. In

mailto:eswariselvam94@gmail.com

general, these reside on the physical devices, and

provide the necessary functionalities to enable

service deployment. Complementary to

middleware are programming language

approaches [7], [8]. These approaches tackle

some of the challenges (such as discovery,

network disconnections, and group

communication) posed by the IoT, but are

limited in their support for others such as

context-awareness (e.g., context-aware service

discovery) and scalability.

Considering the importance of IoT in various

domains, this article takes a holistic view of

middleware for IoT and (1) identifies the key

characteristics of IoT, and the requirements of

IoT’s middleware ,(2) based on the identified

requirements, presents a comprehensive review

of the existing middleware systems focusing on

current, state-of-the-art re-search), and (3)

outlines open research challenges.

II. BACKGROUND

A. IoT and its Characteristics

 Research into the IoT is still in its early stage,

and a standard definition of the IoT is not yet

available. IoT can be viewed from three

perspectives: Internet-oriented, things-oriented

(sensors or smart things) and semantic-oriented

(knowledge) [6]. Also, the IoT can be viewed as

either supporting consumers (human) or

industrial

The definition of “things” in the IoT vision is

very wide and includes a variety of physical

elements. These include personal objects we

carry around such as smart phones, tablets and

digital cameras. It also includes elements in our

environments (e.g. home, vehicle or work),

industries (e.g., machines, motor, robot) as well

as things fitted with tags (e.g., RFID), which

become connected via a gateway device (e.g., a

smart phone). Based on this view of “things”, an

enormous number of devices will be connected

to the Internet, each providing data and

information, and some, even services.

Sensor Networks (SNs), including wireless

sensor networks (WSNs) and wireless sensor

and actuator networks (WSANs), RFID, M2M

communications and Supervisory Control and

Data Acquisition (SCADA) are the essential

components of IoT. According to the RFID

community, IoT can be defined as, “The

worldwide network of interconnected objects

uniquely addressable based on standard

communication protocols”.

Fig.1 Definition of IoT

As described in more detail in this section, a

number of the IoT’s characteristics are inherited

from one or more of these components. For

instance, “resource-constrained” is inherited

from RFID and SNs, and “intelligence” is

inherited from WSNs and M2M. Other

characteristics (e.g., ultra large-scale network,

spontaneous interactions) are specific to the IoT.

Fig.2 Potential applications of IoT

B. Middleware in IoT and its Requiremens

Generally, a middleware abstracts the

complexities of the system or hardware,

allowing the application developer to focus all

his effort on the task to be solved, level. A

middleware provides a software layer between

applications, the operating system and the

network communications layers, which

facilitates and coordinates some aspect of

cooperative processing. From the computing

perspective, a middleware provides a layer

between application software and system

software.

 Middleware Service Requirements
 Middleware service requirements for the IoT

can be categorised as both functional and non-

functional. Functional requirements capture the

services or functions (e.g., abstractions, resource

management)a middleware provides and non-

functional requirements (e.g., reliability,

security, availability) capture QoS support or

performance issues.

 In this section, no attempt is made to capture

domain or application-specific requirements, as

the focus is on generic or common functional

ones.

 Architectural Requirements
 The architectural requirements included in

this section are designed to support application

developers. They include requirements for

programming abstractions, and other

implementation-level concerns.

 Providing an API for application developers

is an important functional requirement for any

middleware. For the application or service

developer, high-level programming interfaces

need to isolate the development of the

applications or services from the operations

provided by the underlying, heterogeneous IoT

infrastructures. The level of abstraction, the

programming paradigm, and the interface type

all need to be considered when defining an API.

III. OVERVIEW OF EXISTING WORK

Middleware in IoT is a very active research

area. Many solutions have been proposed and

impl implemented, especially in the last couple

of years. These solutions are highly diverse in

their design approaches (e.g., event-based,

database), level of programming abstractions

(e.g., local or node level, global or network

level), and implementation domains (e.g.,

WSNs, RFID, M2M, and SCADA).

In this survey, the existing middleware

solutions are grouped for discussion based on

their design approaches, as below:

 Event-based

 Service-oriented

 Virtual Machine-Based Middleware

 Tuples spaces

 Database oriented

Some middleware use a combination of

different design approaches. For instance, many

service-oriented middleware's (e.g.,

SOCRADES, Servilla) also employ VMs in their

design and development. Typically, hybrid

approaches perform better than their individual

design categories by taking the advantages of

multiple approaches.

A. Event-Based Middlewares

 In event-based middleware, components,

applications, and all the other participants

interact through events. Each event has a type, as

well as a set of typed parameters whose specific

values describe the specific change to the

producer’s state. Events are propagated from the

sending application components (producers), to

the receiving application components

(consumers). An event system (event service),

may consist of a potentially large number of

application components (entities) that produce

and consume events .Message-oriented

middleware (MOM) is a type of event-based

middleware. Generally, messages carry sender

and receiver addresses and they are delivered by

a particular subset of participants, whereas

events are broadcast to all participants.

B. Service-Oriented Middlewares

The service-oriented design paradigm builds

software or applications in the form of services.

Service-oriented computing (SOC) is based on

Service-Oriented Architecture (SOA)

approaches and has been traditionally used in

corporate IT systems. The characteristics of

SOC, such as technology neutrality, loose

coupling, service reusability, service

composability, service discoverability, are also

potentially beneficial to IoT applications.

Fig.3 General design model for a Service-Oriented

Middleware

C. Virtual Machine-Based Middleware

Virtual machine (VM) oriented middleware

design provides programming support for a safe

execution environment for user applications by

virtualizing the infrastructure. The applications

are divided into small separate modules, which

are injected and distributed throughout the

network. This approach addresses architectural

requirements such as high-level programming

abstractions, self-management and adaptively,

while supporting transparency in distributed

heterogeneous IoT infrastructures , VMs can be

divided into two categories: (i) Middleware

Level VMs (VMs are placed between the OS

and applications) and System Level VMs

(substitute or replace the entire OS. Level VMs

add capabilities (e.g., concurrency) to the

underlying OSs System Level VMs free up

resources that would otherwise be consumed by

the OS.

D. Agent-Based Middlewares

Fig.4 General design model for an agent-based

middleware

 In the agent-based approach to middleware,

applications are divided into modular programs

to facilitate injection and distribution through the

network using mobile agents. While migrating

from one node to another, agents maintain their

execution state. Previous research in this area

has presented a number of advantages for using

mobile agents in generic distributed systems. In

the context of the IoT middleware requirements,

these are: resource management (network load

reduction and network latency reduction), code

management (asynchronous and autonomous

execution and protocol encapsulation),

availability and reliability (robustness and fault-

tolerance), adaptiveness and heterogeneity.

Moreover, an agent can engage in dialogues with

other soft-ware agents to proactively gather data

and update only parts of the application.

Additionally, agent-based approaches consider

resource-constrained devices.

E. Tuple-Space Middleware

In tuple-space middlewares, each member of

the infrastructure holds a local tuple space

structure. A tuple space is a data repository that

can be accessed concurrently. All the tuple

spaces form a federated tuple space Fig. 9) on a

gateway. This approach suits mobile devices in

an IoT infrastructure, as they can transiently

share data within gateway connectivity

constraints.

Fig.5 General design model for an tuple-space

middleware

Applications communicate by writing tuples in a

federated tuple space, and by reading them through

specifying the pattern of the data they are interested

in.

F. Database-Oriented Middlewares

Fig.6 General design model for an database-oriented

middleware

In database-oriented middleware, a sensor

network is viewed as a virtual relational

database. An application can query the database

using an SQL-like query language, which

enables the formulation of complex queries

Research in this area has been focused on

developing a distributed database approach to

interoperating systems.

IV. OPEN RESEARCH CHALLENGES AND

FUTURE WORK

Although the middlewares presented herein

address many issues and requirements in IoT,

there are still some open re-search challenges. In

particular, research is needed in the area of

dynamic heterogeneous resource discovery and

composition, scalability, reliability,

interoperability, context-awareness, security and

privacy with IoT middleware. Importantly, most

current middlewares address WSNs, while other

perspectives (e.g., M2M, RFID, and SCADA)

are rarely addressed. This survey indicates that

there have been significant advances in

addressing many challenges for middleware in

an IoT environment, with the following open

challenges remaining.

Resource Discovery: The dynamic and ultra

large-scale nature of the IoT infrastructure

invalidates centralized resource registries and

discovery approaches. However, deciding

between purely distributed and hybrid solutions

is complicated. A trade-off is necessary between

registry distribution and the number of registries.

Fewer registries provide consistent and fast

discovery of resources under normal

circumstances, but will not scale well when there

is a large number of service discovery queries in

IoT applications. Probabilistic resource (e.g.,

service) registries and discovery can be scalable,

though may not work well in applications (e.g.,

mission critical applications) that need

guaranteed discovery of resources with high

accuracy. Further research is necessary for

improved and highly accurate probabilistic

models to make them suitable for diverse

applications of IoT.

Resource Management: Frequent resource

conflicts occur in IoT applications that share

resources (e.g., actuators). Conflict resolution

will be required to resolve conflicts in resource

allocation among multiple concurrent services or

applications. This is not considered in most

existing middleware solutions, except ubiSOAP.

There is clearly significant scope for future work

in this area. Agent-based cooperative approach

for conflict resolution could be a good starting

point for autonomous conflict management.

Data Management: A vast amount of raw data

continuously collected needs to be converted

into usable knowledge, which implies

aggregated and filtered data. Most of the

surveyed middlewares offer support for data

aggregation, but do not consider data filtering.

Data filtering is likely to be found in application-

specific approaches since the middleware is

tailored for a specific application or group of

applications. Moreover, no approach offers data

compression. This remains an important issue

for research since many IoT devices are

resource-constrained and transmission of data is

more expensive than local processing

Event Management: A large number of events

are generated proactively and reactively in IoT.

Because of this, it is expected that middleware

components may become bottlenecks in the

system. Most of the middleware surveyed cannot

handle or have not been tested against this

requirement. Also, events can be primitive (i.e.,

simple) or complex. Most middlewares statically

pre-define how an event is handled. Further

work should consider complex events and how

to handle unknown events. Moreover, the work

presented does not consider the difference

between discrete (e.g., a door opens, switch on a

light) and continuous events (e.g., driving a car).

Code Management: Re-programmability is

one of the major challenges not only in IoT, but

also in software development. Updates or

changes in business logic should be supported by

any IoT component. Agent-based, virtual

machine-based and application-specific

middlewares offer support for code

management. Many do not distinguish between

business logic code (i.e., application code) or

firmware code. Moreover, none handles both

cases. Many middlewares considered only

homogeneous devices, though virtual machine

approaches address this issue through migration

and allocation of interpreted code, rather than

compiled code. However, reducing the size of

the interpreted code compared with the compiled

code is still a challenge.

V. SUMMARY AND FUTURE WORK

Middleware is necessary to ease the

development of the diverse applications and

services in IoT. Many proposals have focused on

this problem. The proposals are diverse and

involve various middleware design approaches

and support different requirements. This paper

puts these works into perspective and presents a

holistic view of the field. In doing this, the key

characteristics of IoT and the requirements of

IoT’s middleware are identified. Based on these

requirements, a comprehensive survey of these

middleware systems focusing on current, state-

of-the-art research has been presented. Finally,

open research issues, challenges and

recommended possible future research directions

are outlined.

This survey categorises the existing

middlewares according to their design

approaches: event-based, service-oriented,

agent-based, tuple-space, VM-based, database-

oriented, and application-specific. Each category

has many middleware proposals, which are

presented accordingly. Most of these proposals

have been reviewed and summarised in terms

their supported functional, non-functional, and

architectural requirements. The summaries show

that each middleware fully or partially supports

two or more of the listed requirements from each

requirement type .

REFERENCES

[1] A.Gavras, A. Karila, S. Fdida, M. May,

and M. Potts, “Future internet research

and experimentation: the FIRE

initiative,” Computer Communication

Review, vol. 37, no. 3, pp. 89–92, 2007.

[2] K. Paridel, E. Bainomugisha, Y.

Vanrompay, Y. Berbers, and W. D.

Meuter, “Middleware for the internet of

things, design goals and challenges,”

Electronic Communications of the

EASST, vol. 28, 2010.

[3] P. Bellavista, G. Cardone, A. Corradi,

and L. Foschini, “Convergence of manet

and wsn in iot urban scenarios,” Sensors

Journal, IEEE, vol. 13, no. 10, pp. 3558–

3567, Oct 2013.

[4] J. Gubbi, R. Buyya, S. Marusic, and M.

Palaniswami, “Internet of Things: A

vision, architectural elements, and future

directions,” Future Generation

Computer Systems, vol. 29, no. 7, pp.

1645 – 1660, 2013.

[5] L. Atzori, A. Iera, and G. Morabito,

“The internet of things: A survey,”

Computer networks, vol. 54, no. 15, pp.

2787–2805, 2010.

[6] D. Le-Phuoc,A. Polleres, M. Hauswirth,

G. Tummarello, and C. Mor-bidoni,

“Rapid prototyping of semantic mash-

ups through semantic web pipes,” in

Proceedings of the 18th International

Conference on World Wide Web. New

York, NY, USA: ACM, 2009, pp. 581–

590.

[7] Dohr, R. Modre-Opsrian, M. Drobics, D.

Hayn, and G. Schreier, “The internet of

things for ambient assisted living,” in

Information Technology: New

Generations (ITNG), 2010 Seventh

International Conference on, April 2010,

pp. 804–809.

[8] Katasonov, O. Kaykova, O. Khriyenko,

S. Nikitin, and V. Y. Terziyan, “Smart

semantic middleware for the internet of

things.” INSTICC Press, 2008, pp. 169–

178.

[9] Y. Ni, U. Kremer, A. Stere, and L.

Iftode, “Programming ad-hoc networks

of mobile and resource-constrained

devices,” SIGPLAN Not., vol. 40, no. 6,

pp. 249–260, Jun. 2005.

[10] H. Zhou, The Internet of Things in the

Cloud: A Middleware Perspec-tive,

	Acronyms
	I. Introduction
	II. Background
	A. IoT and its Characteristics
	B. Middleware in IoT and its Requiremens

	III. Overview Of Existing Work
	A. Event-Based Middlewares
	B. Service-Oriented Middlewares
	C. Virtual Machine-Based Middleware
	D. Agent-Based Middlewares
	E. Tuple-Space Middleware
	F. Database-Oriented Middlewares

	IV. Open Research Challenges And Future Work
	V. Summary And Future Work
	REFERENCES

