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ABSTRACT 

Clustering techniques are used to partition the transaction data values. Similarity measures are used to 
analyze the relationship between the transactions. Vector based similarity models are suitable for low dimensional 
data values. High dimensional data values are clustered using subspace clustering methods. 

Clustering high-dimensional data is a major challenge due to the curse of dimensionality. Projective 
clustering attempts to find projected clusters in subsets of the dimensions of a data space. Probability model 
describes projected clusters in high-dimensional data space. Model-based algorithm for fuzzy projective clustering 
that discovers clusters with overlapping boundaries in various projected subspaces. Model Based Projective 
Clustering (MPC) algorithm is used in the system.  

The projective clustering techniques are used to cluster the high dimensional data. The model based 
projective clustering algorithm is a subspace clustering technique. Non-axis-subspaces are used with similarity 
analysis. Anomaly transactions are partitioned with projected clusters. The proposed system is designed to perform 
clustering on high dimensional spaces. Non access subspaces are included in the similarity analysis. Anomaly data 
values are verified with similarity under the clustering process. The subspace selection process is optimized.  
 
1. Introduction 
  Data clustering has a wide range of 
applications and has been studied extensively in the 
statistics, data mining, and database communities. 
Many algorithms have been proposed in the area of 
clustering. One popular group of such algorithms, the 
model-based methods, have sparked wide interest 
because of their additional advantages, which give 
them the capacity to describe the underlying 
structures of populations in the data.  
  In model-based methods, data are thought of 
as originating from various possible sources, which 
are typically modeled by Gaussian mixture. The goal 
is to identify the generating mixture of Gaussians, 
that is, the nature of each Gaussian source, with its 
mean and covariance. Examples include the classical 
k-means and its variants. However, such methods 
would suffer from the curse of dimensionality 
problem for high dimensional data. 
  Many types of real-world data, such as the 
documents represented in the Vector Space Model 
(VSM) used in text mining and the microarray gene 
expression data of bioinformatics, consist of very 
high dimensional features. The data are inherently 
sparse in high-dimensional spaces, making the 
Gaussian function inappropriate in this case. 
Verleysen states that when the dimension increases, 
the percentage of the samples of a normalized 
multivariate Gaussian distribution falling around its 
center would rapidly decrease to 0. In other words, 
most of the volume of a Gaussian function is 
contained in the tails instead of near the center in 

high-dimensional space: the so called “empty space 

phenomenon”. 
  Furthermore, in a high-dimensional space, 
clusters may exist in different subspaces comprised 
of different combinations of features. In many real-
world applications, in fact, some points are correlated 
with a given set of dimensions, and others are 
correlated with different dimensions [11]. For 
example, in document clustering, clusters of 
documents on different topics are characterized by 
different subsets of keywords. The keywords for one 
cluster may not occur in the documents of other 
clusters. To address the above challenges, projective 
clustering has been defined to find clusters in 
different subspaces of the same data set. 
  A projected cluster is an ensemble of subsets 
of points, each of which is associated with a subset of 
attributes. Two different projected clusters are 
illustrated for a set of data points in 3-dimensional 
space. There are two clusters in this example; 
however, they are associated with two different low-
dimensional subspaces. The first cluster corresponds 
to the data in group C1, which are close to each other 
when projected into the subspace consisting of the 
dimensions A1 and A2, while the second one 
corresponds to the data in group C2 projected onto the 
A1 - A3 plane. 
  A number of algorithms for finding such 
projected clusters have been proposed in the 
literature. They fall into two categories [2]. Those in 
the first category, which include PROCLUS, 
ORCLUS and FINDIT, are aimed at discovering the 
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exact subspaces of different clusters. The algorithms 
in the second category cluster data points in the entire 
data space but assign different weighting values to 
different dimensions of clusters: examples include 
EWKM, FWKM and LAC. Most of the algorithms in 
the second category are of the k-means type, whose 
sequential structure is analogous to the mathematics 
of the EM algorithm. However, there is a general lack 
of underlying models on which these methods can be 
built.  
 In this paper, we will present a new model-
based method for projective clustering. The first 
contribution is the proposal of a probability model to 
describe projected clusters in a high-dimensional 
space. In contrast to existing models for high-
dimensional data clustering, our extended Gaussian 
model is designed for projective clustering, and by 
analysis is able to explain the general assumptions 
used in popular projective methods. Second, we 
derive an objective function for projective clustering 
based on the probability model and propose an EM-
type, parameter-free algorithm, named MPC, for 
optimizing the objective function. The performance 
of MPC has been evaluated on synthetic data sets and 
some widely used real-world data sets, and the 
experimental results show its effectiveness. The 
method presented in this paper is very different from 
the one in our previous work [4]. Although the basic 
density function of the projected cluster is reused, the 
probability model for projected clusters has been 
changed. This results in a different algorithm which 
is no more dependent on any user-defined parameter 
for updating the dimension weights. The new 
algorithm has been much better motivated, analyzed, 
and experimentally evaluated. 
2. Related Work 
2.1 Techniques for High-Dimensional Clustering 
  Techniques for dimensionality reduction 
have been used in high-dimensional data clustering. 
Feature transformation techniques, such as PCA and 
SVD, attempt to summarize the data set in a smaller 
number of new dimensions created via linear 
combination of the original attributes, while feature 
selection methods select only the most relevant 
attributes for the clustering task. Because these 
traditional techniques are performed in the entire data 
space, they may encounter difficulties when clusters 
are found in different subspaces. Local 
Dimensionality Reduction (LDR) attempts to create a 
new set of dimensions for each cluster. The 
difficulties with such method include the 
determination of dimensionality for each subspace 
associated with the clusters. Additionally, LDR often 
has high computational complexity. 
  Biclustering also referred to as coclustering, 
has been proposed for simultaneous clustering on the 

data points and dimensions of high-dimensional data. 
One of its typical applications is in the analysis of 
gene expression data, where the task is to find 
subgroups of genes and subgroups of conditions such 
that the genes exhibit highly correlated activities for 
every condition. 
  Finally, two related terms occur in the 
literature: subspace clustering and projective 
clustering. According to Parsons et al., projective 
clustering algorithms constitute a particular category 
of the subspace clustering techniques. However, 
different views are put forward elsewhere in the 
literature: see for instance [3]. We adopt the 
taxonomy and make a distinction between the two 
terms based on the ideas behind them. The idea of 
subspace clustering is to identify all dense regions in 
all subspaces, whereas in projective clustering the 
main focus is on discovering clusters that are 
projected onto particular spaces. In the subspace 
clustering field, CLIQUE was the pioneering 
approach, followed by a number of algorithms such 
as ENCLUS and MAFIA and SUBCLU. The major 
concern of this paper is projective clustering. In the 
following pages, we will focus only on such 
techniques. 
2.2 Projective Clustering Methods 
  Projective clustering is typically based on 
feature weighting. Each dimension of each cluster is 
assigned a weighting value, indicating to what extent 
the dimension is relevant to the cluster. Usually, the 
weighting values of a given dimension may be 
different for different clusters. Based on the way the 
weights are determined, projective clustering 
algorithms can be divided into two categories: hard 
subspace clustering and soft subspace clustering.  
  In the first category, the dimensions are 
assigned weights with values of either 0 or 1, 
resulting in hard feature weighting for the subspaces. 
PROCLUS,  which is based on the traditional k-
medoids approach, is a representative algorithm using 
this weighting scheme. PROCLUS samples the data, 
then selects a set of medoids and iteratively improves 
the clustering, with the goal of minimizing the 
average within cluster dispersion. For each medoid, a 
set of dimensions is chosen whose average distances 
to the medoid are small compared to statistical 
expectation. After the subspaces have been identified, 
an average Manhattan segmental distance is used to 
assign points to medoids. PROCLUS requires users 
to provide the average number of relevant dimensions 
per cluster, which is usually unknown to users.  
  FINDIT, which uses a distance measure 
called the Dimension-Oriented Distance (DOD), is 
similar in structure to PROCLUS. As a hierarchical 
clustering algorithm, HARP automatically determines 
the relevant attributes of each cluster without 



requiring user-defined parameters. HARP is based on 
the assumption that two data points are likely to 
belong to the same cluster if they are very similar to 
each other along many dimensions. DOC also defines 
the subspace as a subset of attributes on which the 
projection of points in a partition is contained within 
a segment. DOC computes projected clusters using a 
randomized algorithm to minimize a certain quality 
function. MINECLUS improves on DOC by 
transforming the problem of finding the projected 
clusters into the problem of mining the frequent item 
set. 
  PROCLUS and the other algorithms 
mentioned above search for axis-aligned subspaces 
for the clusters, while some other methods search 
more general subspaces, termed nonaxis-aligned, 
where the new features are linear combinations of the 
original dimensions. ORCLUS is a generalization of 
PROCLUS that can discover clusters in arbitrarily 
oriented subspaces. By covariance matrix 
diagonalization, ORCLUS selects the eigenvectors 
corresponding to the smallest eigenvalues of the 
matrix of the set of points. ORCLUS inherits the 
weaknesses of PROCLUS mentioned above. KSM, a 
k-means type projective clustering algorithm, 
determines the non-axis-aligned subspaces by SVD 
computations, while EPCH performs non-axisaligned 
projective clustering by histogram construction. 
  Instead of identifying hard subspaces for 
clusters, the algorithms in the second category assign 
weights in the range [0, 1]. Since the weights can be 
any real number in [0, 1], we can call these soft 
projective clustering algorithms. Typically, the 
weight value for a dimension in a cluster is inversely 
proportional to the dispersion of the values from the 
center in the dimension of the cluster. In other words, 
a high weight indicates a small dispersion in a 
dimension of the cluster. Virtually all of the existing 
algorithms in this category are based on the following 
general assumptions: 1) the data project along a 
significant dimension onto a smaller range of values 
than on the other dimensions; 2) the data are more 
likely to be uniformly distributed along each 
irrelevant dimension. We will examine the 
capabilities of our projective clustering model, 
presented below, with respect to these two general 
assumptions.  
  A number of soft projective clustering 
algorithms have been reported recently. In [8], an 
algorithm making use of particle swarm optimization 
is presented. Since a heuristic global search strategy 
is used, the near-optimal feature weights could be 
obtained by this algorithm; however, it would run 
more slowly than other algorithms. To build an 
efficient soft projective clustering algorithm, the k-
means type structure has been widely adopted. Based 

on the classical k-means clustering process, an 
additional step for computing the weighting values is 
added in each iteration in these algorithms, which 
include EWKM, FWKM, LAC and FSC [5], etc. 
Algorithm 1 shows a typical structure for these 
algorithms. 
Input: the dataset and the number of clusters K; 
Output: the partition C and the associated weights W; 
Begin 

Find the intial cluster V and set W with equal   v 
values; 

     Report 
1. Re-group the dataset into C according to 
V and W; 

  2. Re-compute V according to C; 
  3. Re-compute W according to C; 
     Until convergence is reached; 
end 
 From Algorithm 1, the common projective 
clustering algorithm can be thought of as an EM-
based process for estimating the unknown parameters 
C, V, and W of a model F(C, V, W) from which the 
data originate. However, the underlying F(C, V, W) 
is generally neglected in the above methods. The lack 
of such a model makes derivation of more effective 
clustering algorithms difficult. This has led us to 
work on projected cluster modeling, since we are 
convinced this type of modeling process allows us to 
benefit from the full potential of cluster analysis: for 
example, in describing the underlying mechanism 
that generates the cluster structure and addressing 
cluster validity problems. 
  In a typical model-based clustering analysis, 
one tries to find a mixture of multivariate 
distributions to approximate the data. Due to the 
empty space phenomenon and the property of 
projective clustering, as mentioned above, cluster 
modeling on high-dimensional data is a difficult 
problem. In one of the few attempts to use model-
based high-dimensional data clustering, Hoff [7] 
proposed a model of “clustering shifts in mean and 
variance” based on a nonparametric mixture of 
sequences of independent normal random variables. 
The model is learned by a Markov chain Monte Carlo 
process; however, its computational cost is 
prohibitive. Harpaz et al. [10] presented a 
nonparametric density estimation modeling 
technique, where the data are described as a mixture 
of linear manifolds. A Bayesian approach is used to 
identify groups of points that fit or are embedded in 
lower dimensional linear manifolds. The low 
dimensional subspaces associated with the individual 
clusters are computed by PCA. The problems with 
this method lie in its inflexibility in determining the 
dimensionality of the subspaces, and its inefficient 
clustering process. 



3. Aprobability Model For Projective Clustering 
  The attributes of a non-axis-aligned 
subspace are typically combinations of the 
dimensions of the original data space. Since they are 
difficult to interpret, often making the clustering 
results less useful for many real applications, such as 
document clustering, only projected clusters in axis-
aligned subspaces are formalized in the following 
presentation. 
3.1. Basic Notation and Definitions 
  The notation used throughout the paper is 
summarized in Table 1. Given a data set DB = {x1, 
x2, . . . , xN} containing K clusters, xi  RD for i = 1, 
2, . . .,N are called data points in the D-dimensional 
space. It is assumed that the data set has been 
normalized such that each xij 2 [0, 1] where j = 1, 2, . 
. .,D. The membership degree of xi with regard to the 
kth cluster ck, where k = 1, 2, . . .,K, is denoted as uki, 
subject to the following constraints: 

(1) 
The cluster ck is associated with a weight vector wk = 
<wk1, wk2, . . . , wkD>, satisfying 

 
  Here, the weight wkj is defined to measure 
the relevance of the jth dimension to ck. The greater 
the relevance, the larger the weight. Furthermore, we 
introduce a D × D matrix sk, which is defined as 

 
  For a given ck, the assignment of wk1, wk2, . . 
. , wkD can be regarded as a soft feature selection 
procedure for the space in which ck exists [6]. We 
thus use such a matrix to stand for the subspace 
associated with a cluster.  
3.2 Probability Model 
  It is important to note that the Gaussian 
mixture is a fundamental hypothesis that many 
model-based clustering algorithms make regarding 
the data distribution model [9]. In this case, data 
points are thought of as originating from various 
possible sources, and the data from each particular 
source is modeled by a Gaussian. However, Gaussian 
functions are not appropriate in high-dimensional 
space due to the curse of dimensionality. 
Xi=<xi1,xi2,…….xiD> Ith data point RD, 

i=1,2,……..,N 

DB={x1,x2,…….xN} The data set 
K Number of clusters 
c1,c2,…….ck K clusters of DB 
uki Membership degree of 

xi in ck,k=1,2,….K 
U={ uki }kN Membership matrix, 

where k=1,2,…..,k 

and i=1,2,…….N 
vk =<vk1, vk2,………, vkD > Cluster center vector 

of ck 
V={ vkj }kD Cluster center matrix, 

where k=1,2,……k 

and j=1,2,……..,D 
wk =<wk1, wk2,………, wkD > A weight vector 

associated with ck 
W={ wkj }kD Weight matrix, where 

k=1,2,…….,k and 

j=1,2,…….,D 
TABLE 1: Notation Used throughout the Paper 

  In order to learn the underlying structure of 
clusters in a high-dimensional space, we will 
examine the distribution on each dimension. Consider 
the projections of the data points of the cluster k onto 
the jth dimension. It is reasonable to describe the 
projections using a 1D Gaussian function. The 
probability density function is 

  
  where µkj and k denote the mean and 
covariance of the Gaussian. The above expression 
thus becomes 
 

  
  The major difference between (5) and the 
standard Gaussian is the introduction of the 
weighting value wkj, indicating the contribution of 
the jth dimension to ck. Curves of (5) with different 
values of wkj and a fixed k. As we can see, the 
smaller the weighting value, the more uniformly 
distributed the data points. With a large weighting 
value, the data points would distribute within a small 
range. Note that the characteristic of this extended 
Gaussian meets the general requirements of 
projective clustering.  
  The probability model is created based on 
the following two assumptions. First, it is assumed 
that the distribution of points on each of the 
dimensions spanning the subspace is independent of 
the others. Although this assumption may not be 
realistic in some applications, it is a common 
assumption in many qualitative models, which allows 



us to approximate a joint distribution of the set of 
uncorrelated variables by the product of their 
marginals. Second, it is assumed that variations of 
points are independent of each other. Because 

 
  we then suppose the N inputs x1, x2, . . . , xN 
are independently and identically distributed from the 
following mixture density population: 

 
with 

 
  where  = {( k, vk, wk, k)|1 < k < K) is 

the set of parameters, and k denotes the mixing 
weight of the kth component of the model. 
3.3 Clustering Criterion 
  By applying the probability model to 
clustering, the goal is to estimate   from the given 

data set. Supposing ̂  = {( k, vk, wk, k)|1 < k < K) 

is an estimator of , the distance between F(x, ) 

and F(x, ) can be measured by the following 
Kullback-Leibler divergence function: 

 
  The equation can be decomposed into two 
terms. The first,  F(x; ) ln F(x; )dx, is a 

constant that is irrelevant to ̂ ; therefore, the 
following objective criterion needs to be maximized: 

 
With 

 
  where p(k|x) is the posterior probability of 
an input x from the kth probability density function, 
given x. Substituting for F̂ (x; ̂ ) according to (7) 

in Q1(̂ ), we obtain 

  
  By the law of large numbers, given a data 
set DB, maximizing (8) is equivalent to the maximum 
likelihood learning of  from all the inputs x1, x2, . . 
. , xN. Therefore, using (5) to replace G(xj| v̂ kj, ŵ kj, 

̂ k), the objective criterion can be further 
transformed into  

 (9) 
  For an input xi, the posterior probability 
p(k|xi) is thought of as the fuzzy membership uki in 

clustering. Given that 
N
1

and 

 are constants 
irrelevant to ̂ , the resulting clustering objective 
function can be obtained as 

  (10) 
subject to the constraints of (1), (2), and (6). Here, Z 
= {1, 2, . . ., K, 1, 2, . . . , K}. 
4. Amodel-Based Algorithm For Projective 
Clustering 
  This section presents our algorithm, MPC 
for projective clustering by minimizing (10) subject 
to the constraints of (1), (2), and (6), which is a 
constrained nonlinear optimization problem. Using 
the Lagrangian multiplier technique, this can be 
transformed into an unconstrained optimization 
problem  

 (11) 



where  k(k = 1, 2, . . .,K), , and i(i = 1, 2, . . .,N) 
are the Lagrange multipliers corresponding to the 
constraints defined in (1), (2), and (6). 
4.1. The Optimization Method 
 To achieve a local minimum of the objective 
function, the usual method is to use the partial 
optimization for each parameter in the function. 
Following this method, minimization of J1 in (11) can 
be performed by optimizing U, V, W and Z in a 
sequential structure analogous to the mathematics of 
the EM algorithm. In each iteration, we first fix V = 

v̂ , W = ŵ , and Z = Ẑ , and solve U as Û  to 

minimize J1(U, v̂  , ŵ , Ẑ ). Next, we fix U = Û , W 

= ŵ , and Z = Ẑ  and solve V as v̂  to minimize 

J1(V, V , ŵ , Ẑ ). Then, U = Û , V = v̂  , and W = 

ŵ  are fixed and the optimal Z, say Ẑ , is solved to 

minimize J1(Û , v̂ , ŵ , Z). Afterward, we fix U = 

Û , V = v̂ , and Z = Ẑ  to obtain ŵ  by minimizing 

J1(Û , v̂ , W, Ẑ ). The four partial optimization 
problems are solved according to the following 
theorems.  
4.2 The MPC Algorithm 
  The MPC algorithm, as outlined by 
Algorithm 2, performs projective clustering by 
minimizing the objective function of (10). Actually, 
this solution can also be regarded as an extension to 
the classical FCM algorithm by adding an additional 
step in each iteration to compute W for each cluster, 
an approach which is commonly adopted in existing 
soft subspace clustering algorithms such as [1]. 
Input: DB, K and a termination criterion which is a 
small positive number ;  
Output: U, V and the associated weights W;  
begin  
   Let p be the number of iteration, p=0  
   1. Initialization  
       1.1 Randomly choose K cluster centers. Denote 
V as V(0);  

       1.2 Set all the weights of W to
D
1

, and denote W 

as W (0);  

  1.3 Set all the sk to 
K
1

and sk to a non- 

zero constant and denote them by Z(0);  
     2. repeat  
 2.1 Let V̂ = V(p), Ŵ = W(p) and Ẑ = Z(p), 
compute  1pU ;  

 2.2 Let Û =  1pU ;  

 2.3 Let V̂ =  1pV s to compute k̂  and 
k̂  for k=1,2…….,K, respectively and obtain 
 1pZ ;  

 2.4 Let  1ˆ  pZZ , to determine k̂ for 
k=1, 2,……, K;  
 2.5 Compute  1pW ;  
 2.6 p=p+1.  
    until                   ;,,,,,, 1111   pppppppp ZWVUJZWVUJ  

   3. Output  pU as U,  pV as V and  pW as W. 
end 
  It is important to note that MPC does not 
require user defined parameters for feature weighting, 
whereas most of the existing projective clustering 
algorithms do: for instance, l in PROCLUS,  in 
FWKM,   in EWKM, etc. The only pending 
coefficient, say k̂ , in the weight updating formula 
MPC can be determined by numerically solving. Step 
2.4 of Algorithm 2 is designed for this purpose. All 
the variables except k̂ are given and thus can be 

considered as constants with respect to k̂ . 

Consequently, we can resolve k̂  using a numerical 
method, such as the Newton-Raphson and bisection 
method.  
 
5. Projected Clustering with Outlier Analysis 

The proposed system is designed to perform 
clustering on high dimensional spaces. Non access 
subspaces are included in the similarity analysis. 
Anomaly data values are verified with similarity 
under the clustering process. The subspace selection 
process is optimized. The system is designed to 
perform data clustering on high dimensional data 
values. The model based projective clustering is 
improved with anomaly analysis. The system also 
enhanced with attribute alignment process. The 
system is divided into six major modules. They are 
data cleaning process, subspace selection, subspace 
alignment, clustering with MPC, MPC with outliers 
and clustering with attribute and anomaly analysis. 

The data cleaning module is designed to 
correct noise transactions. The sub space selection 
module is designed to select attribute subsets. The 
attribute alignment is performed under subspace 
alignment module. The clustering is performed with 
model based projective clustering technique. The 
outlier analysis is integrated with MPC model. The 
attribute and anomaly analysis is applied in the 
enhanced MPC model.  
 



6. Conclusion 
  The projective clustering techniques are 
used to cluster the high dimensional data. The model 
based projective clustering algorithm is a subspace 
clustering technique. Non-axis-subspaces are used 
with similarity analysis. Anomaly transactions are 
partitioned with projected clusters. Cluster accuracy 
is improved in the system. Features space selection is 
optimized to handle non aligned attribute subspace. 
Outlier analysis is provided in clustering process. 
Cluster initialization is improved with subspace 
selection process.  
 
REFERENCES 
[1] Q. Wang, Y. Ye, and J.Z. Huang, “Fuzzy k-
Means with Variable Weighting in High Dimensional 
Data Analysis,” Proc. Ninth Int’l Conf. Web-Age 
Information Management (WAIM), pp. 365-372, 
2008. 
[2] L. Jing, M.K. Ng, and J.Z. Huang, “An Entropy 

Weighting k- Means Algorithm for Subspace 
Clustering of High-Dimensional Sparse Data,” IEEE 

Trans. Knowledge and Data Eng., vol. 19, no. 8, pp. 
1026-1041, Aug. 2007. 
[3] G. Moise, J. Sander, and M. Ester, “Robust 

Projected Clustering,” Knowledge Information 

System, vol. 14, no. 3, pp. 273-298, 2008. 
[4] L. Chen, Q. Jiang, and S. Wang, “A Probability 

Model for Projective Clustering on High 
Dimensional Data,” Proc. IEEE Int’l Conf. Data 

Mining (ICDM), pp. 755-760, 2008. 
[5] G. Gao, J. Wu, and Z. Yang, “A Fuzzy Subspace 

Clustering Algorithm for Clustering High 
Dimensional Data,” Proc. Int’l Conf. Advanced Data 

Mining and Applications (ADMA), pp. 271-278, 
2006. 
[6] C. Domeniconi et al., “Locally Adaptive Metrics 

for Clustering High Dimensional Data,” Data Mining 

and Knowledge Discovery, vol. 14, pp. 63-97, 2007. 
[7] P.D. Hoff, “Model-Based Subspace Clustering,” 

Bayesian Analysis, vol. 1, no. 2, pp. 321-344, 2006. 
[8] Y. Lu, S. Wang, S. Li, and C. Zhou, “Particle 

Swarm Optimizer for Variable Weighting in 
Clustering High-Dimensional Data,” Proc. IEEE 

Swarm Intelligence Symp., pp. 37-44, 2009. 
[9] M. Bouguessa, S. Wang, and H. Sun, “An 

Objective Approach to Cluster Validation,” Pattern 

Recognition Letters, vol. 27, pp. 1419-1430, 2006. 
[10] R. Harpaz and R. Haralick, “Linear Manifold 

Clustering in High Dimensional Spaces by Stochastic 
Search,” Pattern Recognition Letters, vol. 40, pp. 

2672-2684, 2007. 
[11] Lifei Chen, Qingshan Jiang and Shengrui 
Wang,” Model-Based Method for Projective  
Clustering ” IEEE Transactions On Knowledge And 

Data Engineering, Vol. 24, No. 7, July 2012. 

 


