

Client Based Adaptive Load Balance In Web

Server

Abstract— The growth of internet services during the past few

years has the demand for scalable distributed computing systems

Ecommerce systems concurrently serve many clients that transmit a

large number of request An increasingly popular and cost effective

technique it improve server performance is load balancing where

hardware and /or software mechanisms decide which t will execute

the client request .Load balancing mechanisms distribute client

workload among server nodes to improve overall systems

responsiveness load balances has emerged as a powerful new

technology to solve our paper focuses on a new generation of

adaptive /intelligent dynamic load balancing technique with based

on J2EE technology and JMX (java monitoring extension) is used

to monitor the performance and status of the server The

effectiveness of the new balancing method will be demonstrated

through exact measurement results compared with former

traditional non adaptive methods

 keywords; Distributed systems, adaptive load balancing ,J2EE

application server, JMX.

I. INTRODUCTION

As the number of concurrent requests is increased on a

standalone server, so the application exceeds the pre-estimated

respond time, because the work load is too much on the server

machine. At this time, there are two options to solve this

problem: using faster machines or using multiple machines

parallel. The first solution can be expensive and limited by the

speed of a standalone machine. The second choice is more

straightforward: deploy the same application on several

machines and redirect client requests to those machines.

The system is transparent from outside, which means that

client applications perceive a standalone very-server with one

accessible IP address. To achieve the performance and

transparency, load balancing algorithms must be utilized. Load

balancing can improve system performance by providing

better utilization of all resources in the whole system, which

consists of computers connected by local area networks. The

main objective of load balancing is to reduce the mean

response time of requests by distributing the

workload.Basically the dynamic load equalization is tough to

simulate however best suited in heterogeneous atmosphere.

Load equalization is required to issues the surplus dynamic

work fairly to entire node within the whole cloud to realize the

high resource utilization. Load equalization could also be

static or dynamic. In static load equalization all data

concerning equalization selections are celebrated earlier and

ignore the present state of the system. However dynamic load

equalization algorithms gather state data and react to system

state if it modified. Migration time is outlined because the

total time needed in leave the resources from one node to a

different and fault tolerance allows the rule to continue

operative accurately within the event of some failure.

Migration is the rule capable to decide to create a decision to

come to a arrangement to make your mind up to choose to

determine that it ought to make changes of load distribution

throughout beheading of method or not. The migration time is

taken for the analysis of the performance of each algorithm

[3]. The OSI model was developed as a framework for

developing protocols and applications that could interact

seamlessly. The OSI model consists of seven layers and is

referred to as the 7-Layer Networking Model [2]. Each layer

represents a separate abstraction layer and interacts only with

its adjoining layers. Load balancing mechanism can be

realized on the Layer 3 - 7. OSI levels 3 and 4 can be

supported balancing mechanisms via network router devices.

On layers 5 and 7, ‘URL Load Balancing’ can be achieved. A

lively example of ‘URL Load Balancing’ can be the

following: the URL may be static (such as

http://www.xxx.net/home) or may be a cookie embedded into

a user session. An example of URL load balancing is directing

traffic to http://www.xxx.net/documents through one group of

servers, while sending http://www.xxx.net/images to another

group. URL load balancing can also set persistence based on

the "cookie" negotiated between the client and the server.

II. RELATED WORKS

In general, It provides many services to the clients to operate

different tasks like keeping, organizing, sharing, searching the

multimedia content like images, animations, audio, video, etc. It

also supports different devices like laptops, tablets, smart phones

etc for performing these operations. With lots of innovation in

communications and technologies, some of the vendors are also

delivering advanced features like camera-to-cloud to keep the live

collecting data into cloud directly, multi-user concurrent

operations (for team collaboration), live streaming, single & multi

clients 3D graphical gaming etc. There is a lot of variation in

utilization of server resources based on type of multimedia

assignment for e.g., server need more CPU, RAM and storage

space for processing gaming or videos when analyze to images or

web pages. The earlier works which are on time based are won’t

be considerable for this research work.

Venkatesan.B, Aishwarya.L, Kasthuri.S,

Assistant Professor/IT, Department of IT, Department of IT,

Paavai engineering college, Paavai engineering college, Paavai Engineering College,

Nammakal, India. Nammakal, India. Namakkal, India.

balavenkatbe@gmail.com ishujoyal96@gmail.com kasthuririthik908@gmail.com

mailto:@gmail.com
mailto:ishujoyal96@gmail.com

III. MATERIALS AND METHODS

Network-based load balancing-

 This type of load balancing is provided by network router devices

and domain name servers (DNS) that service a cluster of host

machines. For example, when a client resolves a hostname, the DNS

can assign a different IP address to each request dynamically based

on current load conditions. The client then contacts the designated

server. Next time a different server could be selected for its next DNS

resolution. Routers can also be used to bind a TCP flow to any back-

end server based on the current load conditions and then use that

binding for the duration of the flow. High volume Web sites often use

network-based load balancing at the network layer (layer 3) and

transport layer (layer 4). Layer 3 and 4 load balancing (referred to as

“switching” [1]), use the IP address/hostname and port, respectively,

to determine where to forward packets. Load balancing at these layers

is limited, however, by the fact that they do not take into account the

content of client requests. Higher-layer mechanisms – such as the so-

called layer 5 switching described above – perform load balancing in

accordance with the content of requests, such as pathname

information within a URL.

Figure 1 Load balancing Architecture

 V. FUNCTIONS OF LOAD BALANCE MODEL

A. Operating System - based load balancing

This type of load balancing is provided by distributed

operating systems via clustering, load sharing, or process migration

mechanisms. For instance Microsoft provides a new clustering

possibility: Microsoft Cluster Server (MSCS) This special Microsoft

software provides services such as failure detection, recovery, and the

ability to manage the servers as a single system. Clustering is a cost

effective way to achieve high-availability and high-performance by

combining many commodity computers to improve overall system

processing power.

B.Middleware-based load balancing

 This type of load balancing is performed in middleware

products, often on a persession or per-request basis. For example,

layer 5 switching has become a popular technique to determine which

Web server should receive a client request for a particular URL. This

strategy also allows the detection of “hot spots,” i.e., frequently

accessed URLs, so that additional resources can be allocated to

handle the large number of requests for such URLs. It can also be

applied on top of consumer level (COTS) networks and operating

systems, which helps reduce cost. In addition, middleware-based load

balancing can provideis essential to use an adaptive load balancing

algorithm, which tries to distribute tasks in an intelligent way using

load information of the nodes formed between shoppers and

server clusters.

IV.TECHNOLOGIES

JAVA:
Introduction of Java

An Object Oriented Programming Language developed at Sun

Microsystems. A Virtual Machine (run-time environment) that

can be embedded in web browsers (such as Netscape Navigator,

Microsoft Internet Explorer) and operating systems. A

standardized set of Class Libraries (packages), that support:

 creating graphical user interfaces

 controlling multimedia data

 communicating over networks

Advantages of java:

 Simple

Java is simpler to learn for programmers if they think in terms

of objects and methods. Java has eliminated the complexities

present in C++. Java supports garbage collection to further simply

the language as it takes the burden of the memory management

off the programmer. Java does not use header files and it

eliminates the C processor. Constructs like struct and union have

been removed. Java also the operator overloading and multiple

inheritance features of other object oriented languages. Perhaps

the most important simplification, however is that java does not

use pointers. Java automatically handles the referencing and de-

referencing of objects for you. Thus it frees us from having to

worry about dangling pointers, invalid pointer references and

memory leaks.

 Object-Oriented

 Java is an object-oriented language. It mainly focuses on

the data in the application and methods that manipulate the data,

rather than thinking strictly in terms of procedures. Java comes

with an extensive set of classes, arranged, that you can use in your

programs.

 Distributed

 Java was built with network communication in mind. It

had a comprehensive library of routines for dealing with network

protocols such as TCP/IP, HTTP, and FTP. Hence it is easy to

read a remote file or resources, as it is to read a local file. Java

applications are open and can be accessed across the Internet.

 Interpreted

Java is an interpreted language. The Java compiler generates

byte-code for the JVM (Java Virtual Machine). This Java byte-

code is platform independent and the programs can be run on any

platform the JVM has been ported to.

 Robust

 Java has been designed for writing reliable or robust

software. It is a strongly typed language, which allows for

extensive compile time checking for potential type mismatch

problems. The lack of pointers and pointer arithmetic features

increases the robustness of Java programs by abolishing the

pointer related bugs. Exception handling is another feature in Java

that makes for more robust programs.

 Secure

 Security is a critical part of the Java environment. Java

allows us to create virus-free programs and prevent malicious

code security, which can be achieved by a digital signature to

Java code. The origin of the code can be established in a

cryptographically secure and unforgettable way.

 Java Virtual Machine

 Java is compiled to byte-codes whose target architecture

is the Java Virtual Machine (JVM). The virtual machine is

embeddable within other environments, e.g., web browsers.

Utilizes a byte-code verifier when reading in byte-codes. The

Class Loader is employed for “classes” loaded over the network.

 Struts

 Apache Struts is a free open-source framework for

creating Java web applications.

Web applications differ from conventional websites in that web

applications can create a dynamic response. Many websites

deliver only static pages. A web application can interact with

databases and business logic engines to customize a response.

Web applications based on JavaServer Pages sometimes

commingle database code, page design code, and control flow

code. In practice, we find that unless these concerns are separated,

larger applications become difficult to maintain.

One way to separate concerns in a software application is to use a

Model-View-Controller (MVC) architecture. The Model

represents the business or database code, the View represents the

page design code, and the Controller represents the navigational

code. The Struts framework is designed to help developers create

web applications that utilize a MVC architecture.

The framework provides two key components:

 A "request" handler provided by the application developer

that is mapped to a standard URI.

 A "response" handler that transfers control to another

resource which completes the response.

 MySQL

MySQL is popular for web applications and acts as the

database component of the LAMP, MAMP, and WAMP

platforms (Linux/Mac/Windows-Apache-MySQL-

PHP/Perl/Python), and for open-source bug tracking tools like

Bugzilla. Its popularity for use with web applications is closely

tied to the popularity of PHP and Ruby on Rails, which are

often combined with MySQL. PHP and MySQL are essential

components for running popular content management systems

such as Joomla!, e107, WordPress, Drupal, and some BitTorrent

trackers. Wikipedia runs on MediaWiki software, which is

written in PHP and uses a MySQL database.

The following features are implemented by MySQL but not

by some other RDBMS software:

Multiple storage engines, allowing you to choose the one

which is most effective for each table in the application (in

MySQL 5.0, storage engines must be compiled in; in MySQL

5.1, storage engines can be dynamically loaded at run time):

Native storage engines (MyISAM, Falcon, Merge, Memory

(heap), Federated, Archive, CSV, Blackhole, Cluster, BDB,

EXAMPLE), and Maria

Partner-developed storage engines (InnoDB, solidDB,

NitroEDB, BrightHouse)

Community-developed storage engines (memcached, httpd,

PBXT)

Custom storage engines

Commit grouping, gathering multiple transactions from

multiple connections together to increase the number of commits

per second.

 JFreeChart

JFreeChart is a free 100% Java chart library that makes it easy

for developers to display professional quality charts in their

applications. JFreeChart's extensive feature set includes:

a consistent and well-documented API, supporting a wide range

of chart types;

a flexible design that is easy to extend, and targets both server-

side and client-side applications;

support for many output types, including Swing components,

image files (including PNG and JPEG), and vector graphics file

formats (including PDF, EPS and SVG);

JFreeChart is "open source" or, more specifically, free software. It

is distributed under the terms of the GNU Lesser General Public

Licence (LGPL), which permits use in proprietary applications.

 Apache Tomcat Server

 Apache Tomcat is a web container, or application server

developed at the Apache Software Foundation (ASF). Tomcat

implements the Java Servlet and the JavaServer Pages (JSP)

specifications from Sun Microsystems, providing an environment

for Java code to run in cooperation with a web server. It adds

tools for configuration and management but can also be

configured by editing configuration files that are normally XML-

formatted. Tomcat includes its own internal HTTP server.

 Apache Tomcat Architecture

Figure 3 Apache Tomcat Architecture

 Server

In the Tomcat world, a Server represents the whole container.

Tomcat provides a default implementation of the Server

interface., and this is rarely customized by users.

 Service

A Service is an intermediate component which lives inside a

Server and ties one or more Connectors to exactly one Engine.

The Service element is rarely customized by users, as the default

implementation is simple and sufficient: Service interface.

 Engine

An Engine represents request processing pipeline for a

specific Service. As a Service may have multiple Connectors, the

Engine received and processes all requests from these connectors,

handing the response back to the appropriate connector for

transmission to the client. The Engine interface may be

implemented to supply custom Engines, though this is

uncommon.

 Host

A Host is an association of a network name, e.g.

www.yourcompany.com, to the Tomcat server. An Engine may

contain multiple hosts, and the Host element also supports

network aliases such as yourcompany.com and

abc.yourcompany.com. Users rarely create custom Hosts because

the StandardHost implementation provides significant additional

functionality.

 Connector

A Connector handles communications with the client. There

are multiple connectors available with Tomcat, all of which

implement the Connector interface. These include the Coyote

connector which is used for most HTTP traffic, especially when

running Tomcat as a standalone server, and the JK2 connector

which implements the AJP procotol used when connecting

Tomcat to an Apache HTTPD server. Creating a customized

connector is a significant effort.

 Context

A Context represents a web application. A Host may contain

multiple contexts, each with a unique path. The Context interface

may be implemented to create custom Contexts, but this is rarely

the case because the StandardContext provides significant

additional functionality.

 Network Load Balancing End-node

Configuration Pattern

Load balancing technology is used to balance workload across

servers to improve availability, performance, and scalability.

Network Load Balancers are implemented at the workgroup/server

switch layer. Load balancing increases performance consistency and

application availability and are therefore recommended for NIH
enterprise applications.

A one-to-one or one-to-many mapping can be used to access a

specific server or a group of servers respectively. Additionally, it

offers multiple algorithms for mapping user requests to servers (e.g.,

round-robin, random, or depending on server utilization) and

provides proxy services. The End-node Configuration does not
provide NAT.

Therefore the load-balanced servers can access other resources in the

network directly without having to utilize the load balancers’ proxy

services; this facilitates access to backup and other services. When

deployed singly, a load balancer can improve performance by

efficiently allocating workload across multiple servers. In order to

deliver improved availability, the load balancers must be deployed in

pairs, with hot standby configured. Otherwise, the load balancer can
become a single point of failure for the servers.

 JMX

JMX Module helps the load balancer to connect the J2EE web

servers. JMX Module uses Java Management Extensions

technology and can connect to any JVM (Java Virtual machine) to

get the information. JMX Module contacts the Mbean server on

the remote JVMs and gets the information like thread count, load

average.

 Modules

Figure 4 Module

 Web user interface module

Figure 5 Web User Module

This module provides the user the option to make configurable

changes and start the http Technology used is Struts which based

is on MVC pattern.Web user interface module helps the user to

view/delete the web server details

 Sample Usage – Scheduler

Figure 6 Schedular Module

As a new order is initially placed, schedule a Job to fire in

exactly 2 hours, that will check the status of that order, and

trigger a warning notification if an order confirmation message

has not yet been received for the order, as well as changing the

order's status to 'awaiting intervention'.

 Scheduler Module

Quartz Scheduler library is used to incorporate scheduling

framework

 Core Load balancer Module

The load balancer module forms the core part of the entire system

Load balancer system does the following:

Gets the Http request from the browser Starts the scheduler and

schedules the monitoring job Monitor job continuously monitors the

servers behind load balancer and collects statistical info

 JMX Module

Figure 7 JMX Module

JMX Module helps the load balancer to connect the J2EE web

servers JMX Module uses Java Management Extension

technology and can connect to any JVM (Java Virtual machine)

to get the information JMX Module contacts the Mbean server

on the remote JVMs and gets the information like thread count,

load average

 Web based Admin Module

The web based Admin module is developed using Struts

2framework The admin module allows the user to configure and

manage the load balancer Admin can be made to trigger series

of Http requests to the load balancer

 Database Module

Figure 8 Database Module

The database used in the project is Mysql.MySQL is an open

source relational database management system The database is

needed for the project to allow the load balancer to load config

files and insert JMX results

 Web based Admin Module

The web based Admin module is developed using Struts 2

framework The admin module allows the user to configure and

manage the load balancer Admin can be made to trigger series

of Http requests to the load balancer

 Requirements

 Load Balancer must be able to use multicast

 Load Balancer needs to be able to reach all cluster nodes in

order to distribute/redirect requests

 Load Balancer needs to be able to communicate with

clients over the specified address/port

 Load Balancer needs to be able to receive data on multicast

230.0.0.2:27512 to hear when cluster nodes are available

 Any cluster node needs to be able to send data on multicast
230.0.0.2:27512 to inform the Load Balancer of their

availability

 Any cluster node needs to be configured with a cluster-

island value greater than 0 in order to inform the Load

Balancer of their availability.

VI. CONCLUSION
This project provides an insight into load balancing on Web

application server clusters. The major achievement in the proposed

systenm is the optimization of system performance. The load

balancing system results in higher availability and scalability

necessities in an enterprise, Web-based application.
.

REFERENCES

[1] J. LINDFORS, M. FLEURY, THE JBOSS GROUP: JMX: Managing

J2EE with Java Management Extensions. SAMS Publishing Inc., 2002.

[2] J. BASNEY AND M. LIVNY: “Deploying a High Throughput Computing

Cluster,” High Performance Cluster Computing, vol. 1, May 1999.

[3] C. O’RYAN, F. KUHNS, D. C. SCHMIDT, O. OTHMAN, AND J.
PARSONS: “The Design and Performance of a Pluggable Protocols

Framework for Real-time Distributed Object Computing Middleware”, in

Proceedings of the Middleware 2000 Conference, ACM/IFIP, Apr. 2000.

[4] D. SCHMIDT, M. STAL, H. ROHNERT, AND F. BUSCHMANN:
Pattern-Oriented SoftwareArchitecture: Patterns for Concurrent and

Networked Objects. Wiley, 2000.

[5] L.M.CABRERA: "The influence of workload on load balancing

strategies", in Proc.Summer USENIX Conf., pp. 446-458, June 1986.

[6] W.LELAND AND T.OTT: "Load balancing heuristics and process
behavior", in Proc. ACMSIGMETRICS Conf. Measurement and Modeling of

Computer Syst., May 1986.

[7] JACK SHIRAZI: Java Performance Tuning, Second Edition, O’Relly,

[8]J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,

MI, USA: Univ. Michigan Press, 1975.

[9]J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., Nov.–Dec. 1995, pp. 1942–1948.

[10]Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc.
IEEE Int. Conf. Evol. Comput. May 1998, pp. 69–73.

[11]X. Zhang, S. Hu, D. Chen, and X. Li, “Fast covariance matching with

fuzzy genetic algorithm,” IEEE Trans. Ind. Eng., vol. 8, no. 1, pp. 148–

157, Feb. 2012.
[12] W. Ip, D. Wang, and V. Cho, “Aircraft ground service scheduling

problems and their genetic algorithm with hybrid assignment and
sequence encoding scheme,” IEEE Syst. J., vol. PP, no. 99, p. 111.

[13]F. Gonzalez-Longatt, P. Wall, P. Regulski, and V. Terzija, “Optimal

electric network design for a large offshore wind farm based on a modified

genetic algorithm approach,” IEEE Syst. J., vol. 6, no. 1, pp.

164–172, Mar. 2012
[14]H. Cheng and S. Yang, “Genetic algorithms with immigrants schemes
for dynamic multicast problems in mobile ad hoc networks,” Eng. Appl. Artif.

Intell., vol. 23, no. 5, pp. 806–819, 2010
[15]A. Pathan and R. Buyya, "A taxonomy and survey of content delivery

networks," Grid Computing and Distributed Systems (GRIDS) Laboratory,

University of Melbourne, Parkville, Australia, vol. 148,2006.
[16] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning. Reading, Mass.: Addison-Wesley, 1989.M.
[17] Suresh Babu Kuntumalla and Lakshumaiah Maddigalla, “Enhanced
Load Balancing in Clustered Cloud-based Multimedia System”, International
Journal of Engineering Trends and Technology (IJETT) – Volume 29 Number

4 - November 2015.

